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.1. In.! .c.rui 1.u.� . .!.l.2n 

Research in artificial intelligence has spurred 

the development o.f numerous programming languages 

better oriented to expressing and solving the problems 

whlch arise .ln this field. One o:f these languages is 

PIWLOG. The acronym PROLOG is derived from �·ROgramming 

in LOGlc and emphasizes the derivation or the languape 

from predicate 

represents the 

resolution logic 

logic. The development 

discovery of a means 

as a practical programming 

OI PROLOG 

.IO" using 

language 

xor problem solving. 

The se.man tics of PROLOG are essentia�ly those of 

first order resolution loglc(8,4}. Consequently 

and compact 

-the 

language is both well defined in 

dei:inition. Mo.re Important though, the language is .a 

powerful. tool £or problem solving, as has been 

demonstrated .in the deve'lopment o:f several problem 

solving systems, among them a geometry theorem 

prover{3), natural language understanding systems() and 

a program 1or automatic plan generatlon(9). 

The original PROLOG lanµ;uage and an interpreter 

for it were developed at the University o1 Marseille by 
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Colmeraur and his colieagues. The u.uthor has developed 

an implementation in an attempt 1:o provide a more 

of PHO.LOG. The principal goat o:f this usable version 

implementation was to reduce the execution time o:t

PROLOG programs. Another imp ortant aim was to mal<.e the 

PROLOG system more convenient to use by al-tering the 

syntax and prov.idlng improved system rune t ions, 

particularly £or error recovery. 

Thls document is intended to serve a dual purpose. 

It provides 

describes 

language. 

a user's 

the 

The 

design 

user 1 

manual :for ·the system.

and implementation 

manua1 ls contained in 

Sections 

2.3 inclusive describe the basic .:features 

language. Section 2.4 is a detailed re1erence 

It also 

o:f the 

,2 The 

2.1 to 

o:f the 

:for the 

language syntax. A complete description 0£ the buil.t-

in predicates ls provided in 3 Built-in Predicates. 

The data structures and algorithms o� the system 

are described ln The various 

decisions and tradeof':fs made in the design of the 

languRge an<l ln its implementation are discussed in ;;i_ 

Possible future modl�lcations are 

discussed in 6 Fu.:tYre �nsideratlon§ .f.2..r: Pi<OLOG.!.. 
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2 .... l !.n..ir.Q.d�.1l..2n 

The semantics o.:f PROLOG is essentially that 

resolution logic. llut resolution logic itself doe� not 

constitute a programming language. Statements in 

resolution logic are descr.lptive. They have the :form "x 

ls true u . In conventional programming langua�es the 

statements are imperative. They haV(;? the f.orm Hperiorm 

action x11. To derive a programming language :from 

resolution logic we add imperative statements ox the 

:f".:'!"m "prove that x ls true", A statement o:f this form 

is cal�ed a goal statement. A PROLOG program consists 

o:f a set of goal statements and a set o:f axioms.· The 

axloms are descriptive, constituting a list o:f :facts. 

Each goal sta t eme n-t is imperative and requests that 

axioms be used ln an attempt to prove a certain fact. 

To the passive language o:f axioms we have added 

the notion o:f goals to yield a language 01 actiont a 

programming language. This lunguage now allows us to 

request the construction o:f a proo£. But how will the 

attempt at a proof proceed? The proof procedure :for 
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PROLOG uses resolutJon in a simple depth 1lrst, left to 

right search strateg;y. This proof' procedure is not 

complete. Because o� the depth :first strategy a proo:f 

may not be :found even one exists in the search 

space. The proo:f procedure may :1".ol low an in:finite 

branch in the search tree and never ex.amine another 

branch which could yield a sat 1 sf a c to ry pro o · � • U owe v er 

i:f the proof'. procedure terminates we know that it has 

found the right answer. l:f it terminates wlth success 

then a proof exists. It it terminates with 1ailu�e then 

no proof exist s ln the seurch space. 

This simple search strategy may seem 

unsatis.factory since it yields an Incomplete prooI 

procedure, hut it has numerous advantages over mo.re 

general strategies. It can be implemented in a manner 

which is more ef£icient ln the use o:f space than 

current breadth first search methods. The simplicity of 

the PROLOG search strategy makes lt easy -for the 

programmer to unde.rstand and control t he search. The 

strict ordering of the search permits the use -0£ bullt­

ln predicates causing side effects(e.g. READ and WRITE) 

with the knowledge that the side effects will occur in 

a prescribed order. The prospect o1: output being

- 4 -



created in random ,rder does not see� very pleasant! 

Thus, it is evident that the simple search straiegy 

possesses s everal desirable chracterlstics. It ls also 

possibl� to beg the question -Of search strategy by

stating that 11' anyone wants a general theorem prover 

then PROLOG is a �ood language in which to program ltl 

The possibility o:f dl:t:ferent search strategies :for 

PlWLOG is discussed ln fl Future Considerations "f'o� 

�ROLQQ.!. 

An explanation o:f resolution logic in tl::rms of 

classical logic is given in ( ) . Programming using 

resolution logic is discussed in (4). 

This section introduces the syntax of PlWLOG 

axioms and t:-,oals. A brie.f de sci p-t.i on o:f the basic 

syntax is provided in preparation :for the description 

of PROLOG execution in 

A detalleu description of all the syntax rules is then 

provided in 2.4 J:he S:.?::ntax l..n DetaJ.l• 

The basic synto.ctlc unit in PROLOG is the ter.ill..!. A 
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..t�m may be: 

(a) a constant

and digits. 

basically any sequence o1 letcers 

A constant may be an integer or 

an atom. e.g. ABC and X2. 

(b) a variable an asterisk .fol1owed hy a 

sequence o:f letters and digits. e.g. t,cX and 

*Al.

(c) a skeleton - a skeleton n�me and a list 0£ one

or more argument ·terms. The argument terms 

are separated by commas and the i..ist is 

enclosed in parentheses .. e.g. F{X2,*Y)

G( *B,A,F( 3) ). 

The syntax can be described in BNP notation! 

<term>::= <atom> 

<integer> 

<variable) 

<skeleton> 

( <term> ) 

<atom>::= <identi£ier> 

<skeleton>::= <identifier> ( <argument list 

<term> <in11x operator> <term> 

(prefix operator> <term> 

<term> <suffix operator> 

- 6 -
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<infix operator>:.;= <ldenti:fier> 

(prefix operator>::= <ldenti£ler> 

<su1fix operator>::= <identifier> 

<arcument list>::= <term> 

<argu�ent llst> , <term> 

<variable>:-:= >:c 

<varLable) <letter> 

<variable> <digit) 

The rules involving operators describe an a ltE:..t"nat i ve 

notation :for skeletons, to be described 

A l�1Q£a� may be a skeleton or a constant. A Qredic�ig 

ls the name associated with a literal. I:f the literal. 

is a skeleton then the predicate is the skeleton name. 

Otherwise 

l.iteral .. 

it is the constant associated with the 

The general form of a PliOLOG axiom is! 

<axiom head) <- <axiom body) . 

The implication arrow, .u(-" ls read t1is implied by n. 

The axiom head ls a. single literal. The axiom body ls a 

conjunction of literals. A conjunction o± literals may 

- 7 -



be a single literal or two or more llteralJ se�arated 

by the "and" symbol.(&). An example of an axiom ls: 

A <- B 6 C • 

The head is A, the body is B S r.  and the axiom is read 

"A ls implied by B and C" or 11To prove A first prove 8 1 

then prove c« . An axiom may have a null body, in which 

case the implication is omitted and the axiom has the 

:form! 

<axiom head> . 

An axiom with a null body is called a unit axiom. An 

example is: 

F( M ). 

Ti-.,ls is react tt F( M) ls true". 

The general form of a PROLOG goal i s: 

<- <goal conjunction>. 

The goal conjunc-tion is a single literal 

conjunction of liter�ls. Examples of goals are : 

<-P. 

<-Q(R) S F • 

or a 

Goal statcrnen-ts may be regarded as abbreviations ror 

axioms o1 the form: 

0 goal 11 <- (goal conjunction> 

where 11 goal 11 is a distinguished literal which the 
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PROLOG theorem proV·'J:' attempts to 11 prove". 

Fro1u the user point o:.f v.iew the PROLOG sy:.,tem 

ac.cepts axioms and goals .1:rom the terminal. Axioms 

which are entered are recorded £or later use in proofs. 

An attempt is made to prove a goal statement as soon as 

it ls entered. 

In axioms and te�rns all variables are .1.SSUmE:�d -to 

be universally quant1Licd. That ls, an axiom containing 

variables is valid :for any 11 valuestt which the variables 

may take on. A verbal 

"FATHER( *X, *Y) <- SON( t�y, >.'(X} n 

vePsion o.f the axiom 

ls 11 For all values of X 

and y, x is the �ather o:f y Lf y ls the son o.1: x" • The 

substituting 0£ "va lues11 :for variables 

discussed :further in the next section. 

2.!.J. Execu.:t.i.2n a..nd llJ!cktrack.lng 

wlll be 

PROLOG execution is started by a goal statement. A 

goa� statement is a request for a proo:f. The execution 

o:f a PROLOG program is essentially the actions of an 

elementary theorem prover attempting d proo�. 

A series of diagrams may he used to describe the 
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p:ogress of a PROLvG proof. Each diagram, called an 

.i.mnl..i.£.�1..Qn .i..cg_g_ , des c r i bes 1: he state of the �roo� at 

a glven point ln time. An implication tree consists 0£ 

one or 1·0.re la.belled_ nodes. A-t the top o.f the diagram 

other nodes is is a node labelled 11goal"• Each o:f the 

labelled with a literal and ls joined to a parent node 

lmmmediately above it. A node is called -the 

its parcnte A node may be in any c�e o� three states: 

{1) open: No attempt has been made to prove the 

literal labelling the node. 

children. 

The node has no 

(2) closed: The lite:ral labelling the node 

been proven using a unit ax.iom :for 

has 

the 

literal. The node is marked with an ll_xU to 

distinguish .i-t from an open nodeio A closed 

node has no children. 

(3) active: The literal labelling the node is 

being proven (or has been proven) using a

non-unit axiom. The node is labelled with the 

literal. o1: the axiom head .. The children 0£. 

the node are labelled with the litC'rals o:f 

the axiom body. The left-to-right order of 

the literals in the axiom body is preserved 
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in the diagram. The original goal statement 

is treated as an a.xlom o:f the .form "goal <-

<izoal con�junction> 0
• Thus thu children o.:f the 

goal node, are 1.abel.lect with the literals o:f 

the goal conjunction. 

Consider the 1ollowing axl-0ms and goal: 

\(-B&C. 

B. 

c<-n. 

D. 

<-A. 

The proo£ of this goal is represented by the following 

�mpllcation tree: 

goal 

I \ 

This is all nodes 

are either active or closed. The nodes labelled B and D 

have been closed using axioms "B •" and un. n 
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respectively. The noue labelled A ls active and has 

been proven using the axio,· "A<-BGC. 0
• 

Consider the :following example 0£ 

goal statement: 

A<-usc. 

B<-DSF. 

B(-EGF. 

c<-G. 

E(-G. 

F<-H • 

G. 

H. 

axi.oms and a 

The initial state 0£ the proo£ is represented as: 

The :first 

giving! 

goal 

I 
A 

axiom 

u;oal 

I \ 
B C 

:for A is selected, namely A<-BSC 
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The prover ulwuys works ln a dcpth-1irst Le�t-to-rlght 

f'ashion. Conscqucn t ly the ·.1ex t lite ra. l -to be proven is 

B. The axiom B<-DSF is selected:

goa·t 

\ 

\ 

F 

The prover then attempts to prove D. But ·there are no

axioms for D so the prover must backtrack. This 

lnvolves backing up the proo.f and -trying o1: her 

alternatives. A chQlc_g .Q..Ql.11..1 in the proof is a point 

where an axiom was chosen to prove a literal and more 

axioms remain to be tried. Backtracking involves 

backing up the proo:f to the most recent choice point 

and making a dif.ferent choice. The order in which the 

axioms are chosen is not arb�trary. Axioms are always 

selected in ihe order in which they appear in the 

input. In this example B<-DSF will always be examined 

before B<-ECF. 

The 111 o st recent c ho ice point in the current proof 

is the point where the axiom B<-D&F was selected. The 

prooL ls hacked up to this point and the other axiom, 
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B(-ESF 1 is selected. The proof continues as shown 

below: 

goal 
=> I 

A 

I \ 

D C 

I \. 

E F 

t:!;Oa.l

=> I 
A 

I \ 

B C 

I \ 
E F 

I 
G 

goal 

=> I 
A 

I \ 

B C 

I \ 
E .F 

J 
G 

X 

goal 

=> I 
A 

I \ 

B C 

I \ 

E F 

l I 
G H 

X 
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=> 

=> 

=> 

The :final 

E 

I 
G 

X 

E 

J 
G 

E 

I 
G 

X 

goal 

I 
A 

I \ 

B C 

I \ 

F 

I 
H 

X 

goal 

I 
A 

I \ 

B C 

I � 

F 

I 
H 

goal 

I 
A 

I \ 

B C 

I \ 

F 

I 
H 

X 

proo:f 

lrupllcatlon tree. 

\ 

\ 

. 

G 

G 

X 

ls represented by a completed 

OI course, if the proo£ IaiLs then 

the 1.mplicatlon tree is never completed. 11, in this 

example, we omit the axiom c<-G then the proo� attempt 

will fail. Alternatively, 1£ we include another axiom 

n<-D then the prover will attempt to construct 

"infinite branch 11 or the implication .tree: 

- 15 -

an 



D 

l 
D 

I 
D 

•• •

Eventually an error will occur when the proo:f stack 

over:flows. 

In the previous examples, none of the predicates 

have arguments. For example, the predicate term 

FATHER{JOHN,FRED) has two arguments, JOHN and FRED, and 

can be used to .represent the statement 0 JOHN is the 

FATHER c:f 

variables. 

FRED"• PROLOG 

Fo.r 

axioms can

example 

al.so -contain

the axiom 

SON(*X,*Y)(-FATHER{*Y,*X) represents the statement 

is the son of y if y is the .:father o.f x"• Variables in 

PHOLOG are assumed to be universally quantl�ied. That 

ls,an axiom containlnR a variable is considered to be 

"true n :for any 11 values 11 the variable may take. We will 

make the idea of a variable 

precise. In any axiom or 

"taking a value" more

goal we can perform u. 

replaces all occurrences 

o.f a variable by u term. The repldcing term may be a 

constant (such as ABC or 32 >, a skeleton(such as F(A) 

or G{ *X,*Y)) or another variable. For example, 1:f we
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substitute A for *X in G(*X,F(*Xl) then the .resul·t lng 

term is G{A,F(A)). I£ we substitute F(*Y) for *X in 

H(*X,*Y) then the result is H(F(*Y),*Y). When one or 

more substitutions. are applied to a term (or axiom), 

the result is called an instance o:.f. the term { o.r 

axiom)• For example, SON(FRED,JOHN)(-FATHER(JOHN,FRED) 

is an instance 0£ SON(*X,*Y)<-FATHER(*Y,*X) produced by 

substituting FRED £or *X and JOHN £or *Y• 

To illustrate substitution better, consider the 

1ollowlng example: 

SCN(*X,*Y)<-FATHER(*Y,*X). 

FATHER( JOHN, FRED). 

FATRER{JOHN,GEORGE). 

FATHER{ AL, BE1<T ),. 

FATHER(GEORGE,AL). 

We wish to solve the goal 11 <-SON(*Z,JOJIN)". By "solving 

a goal" we mean :finding an instance of 

we can prove. In this case we 

the p;oal which 

will prove 

"SON(FRED,JCHN)"• The proof will be illustrated using 

implication trees. The initial tree is: 
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goal 

SON( *Z, JOHN) 

Now we need to £ind an Instance 0£ an axiom which we 

can use in the proof of SON(*Z,JOHN). The appropriate 

instance ls Lormed from SON(*X,*Y)(-FATHER{*Y,*X) by 

substitu�lng *Z £or *X and JOHN £or -*Y to give 

SON(*Z,JOHN}<-FATllER{JOHN,*Z). The tree now ls: 

goal 

SON( *Z, JOHN) 

r'ATHER( JOHN, *Z) 

Note that we 1ound substitutions that made the head of 

an axiom the same as the curren� subterm. The general 

process of finding substitutions to make two terms the 

same is called y.n.i..fl.&.A.!.ion.!.. Next we want to .r.ind an 

axiom whose head w i l l y n i..fl'.: ,vi th FATHER { JOHN , * Z ) • The 

first axlom £or FATHER matches l-J: we substitute FHED 

£or *Z• This gives the completed implication tree: 

goal 

S0N(FkED 1 J0HN) 

FATHER(JOHN 1 FRED) 
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As a further example we will attempt to solve the 

fJ:Oal <-FATHER{ JOHN,*X )SF·�TllElH *X,*Y ). The proo:f 

proceeds as follows: 

�oal 

I \ 

I \ 

I \ 

I \ 

I \. 

FATHER(JOH.N,*X} 

goal 

I \ 

I \ 

I \ 

FATHER( *X, :t,cy) 

I \ 

I \ 

FATllER(JOHN,FRED) FATHER(FRED,*Y) 

X 

The attempt to solve the subgoal FATHER(FRED,*Y) £ails 

since this term will not un1£y with any o� the axiolfi 

heads. Backtracking occurs and the proo� is backed up 

�o the point where the FATUEH(JOHN,FRED) axiom was 

activated. This axlom ls then deactivated and any 

substitutions made when (or since) this axiom was 

selected are uun<lonc"• This res�ores the proo£ to the 

polnt: 
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[!oal 

I \ 

I \ 

I \ 

I \ 

I \ 

FATHER(JOHN,*X) FATHER(*X,*Y) 

The axiom FATHER(JOHN,GEORGE) is about to be selected 

xor unl±icatlon wi�h FATllER(JOHN,*X). This unixication 

succeeds giving: 

goal 

I \ 

I \ 

I \ 

I \ 

I \ 

FATHER(JOllN,GEORGE) FATHER(GEORGE,*Y) 

X 

The axioms �or FATHER are then selected ln turn £or 

uni£ication with FATHER(GEORGE,*Y). The uni�ication 

succeeds for the axiom FATHER(GEORGE,AL), yielding the 

completed impllca�ion tree: 

p;oal 

I \ 

I \ 

I \ 

I \ 

I \ 

FATHER(JOUN,GEORGE) FATHER(GEORGE,AL) 

X X 
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To illustrate the operation o:f PROLOG :L�rther, the 

:fc<llowlnie: e.xumples demonstrate the rnanipulu.tlon o:f more 

complex data structures. A set 0£ elements (similar to 

a LISP list) is represented by 

constructor S and an end marker NIL. 

set with elements A,B and C ls 

S(A,S(B,S(C,NJL))} o� as a diagram: 

s 

I \ 

s 

NIL 

The empty set is represented by NIL. 

completely arbitrary and is chosen 

only. 

a term using a 

For example, the 

represented by

This noi.a-tion ls 

:fo-r this e.:xample 

A reasonable de:flnltion ior the nelement" relation 

ls! 

ELEMENT(*X,S{*Y,*Z))(-ELE�ENT(*X,*Z). 

Verbally thebe axioms might be stated as 11 x is an

element of a set lf it ls the 1irst element in the set 

or i:f lt ls an element of the set of elements Iollowing 

the .flrst element•"• The goal 
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<-ELEMENT(C,S(A,S(B,S(C,S(D,NIL))))) 

yields the following completed implication tree! 

goal 

I 
ELEMENT(C 1 S(A,SCBtSCC,S{D,NIL))))) 

ELENENT(C,S{B,S(C 1 S(D,NIL)))) 
I 

ELEMENT(C,S(C,S(D,NIL))) 

This syntax for representing sets ls clearly 

cumbersome. To simplify this, infix notation may be 

used(inLlx, prefix and suf£lx notation are explained 

more :fully in 2.4 The �tax ln Detail ). If we use a 

n. 0 as the constructor and use int'ix notation th,,!n we 

can denote the set with elements A,B and C by 

A.B.C.NIL. The axioms for ELEMENT become: 

ELEMENT(*X,*Y•*Z)<-ELEMENT(*X,*Z). 

Suppose we want an axiom to write all the elements 

of a set. The following axioms will suffice: 

WRITE 

LIST(*X•*Y)(-WRITE(*X)SLIST(*Y). 

LIST( NlL). 

ls a built-in predicate which <1lways 

succeeds and has the side ef£ect �f displaying its 
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argument tc rm on t ;,-c term.inal. The term is written 

£o1lowed by a period (the end of term delimlier). The 

l!;oal. statement <-LIST{A.e.c.NIL) 

completed implication tree is: 

�oal 

I 
LIST(A.e.c.NIL) 

I \ 

I \ 

WR!TE(A) 

X 

LIST(BQC.NIL) 

I \ 

I \ 

WRITE( B) 

X 

LlST(CoN!L) 

I \ 

I \ 

WRITE(C} 

X 

LI ST( NIL) 

X 

The output on the terminal ls: 

n. 

c. 

succeeds. The 

The .following axiom could also be used to list the 

elements of a set on the �erminal! 

LIST(*X•*Y)(-WRITE(*X)SFAIL. 

LIST(*X•*Y)<-LIST{*Y). 

LIST( NIL). 
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The ;::;oa l (-LIST(A.B.C.NIL) will 11st all elements of 

the l nd.l ca t·t�d set and tl•2n succaed ... The completed 

implication tree is: 

goal 

LIST( A •. B. c. NIL) 

LIST( .u.c.NIL) 

I 
LIST(C.NIL) 

LIST( NIL) 

Suppose we wish to de�ine axioms for a predicate. 

NOTEL{*X,*Y) which succeeds 11 *X is not an elemen� of 

*Y• Reasonable axioms :for this predicate might be;

NOTEL( *X, NIL). 

NOTEL(*X,*Y•*Z) <- NOTEQ(*X,*Y)6NOTEL{*X,*Z). 

Verbally these axioms might be stated: 

11 x is not an element o:f the empty set"• 

"x ls not an element o.:f the set consisting o:f 

y and some other elements if X is 

not equal to y and X is not an 

element 

elements 11. 

o:f

The axioms £or NOTEQ remain to be 

- 24 -
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are: 

NOTEO(*X,*X)<- / S FAIL. 

NOTEQ( t.cX, *Y) • 

These axioms make use of a special control 1eature, the 

sla�h(/). To illustrate this feature we trace the

at�empt to prove the goal (-NOTEQ(A,A). Initially, we 

have! 

,:;o al 

NOTEQ( A•A) 

The £irst axiom is selected giving: 

The 

goal 

NOTEQ(A,A) 

I ' 

/ FAIL 

slash predicate always succeeds. It ls used to 

prevent certain alternatives .1:rom being considered in 

the proo-f. In this case it prevents the second axiom 

for NOTEQ £rom being considered. The implication tree 

looks like: 
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goal 

NOTEQ{A,A} 
I \ 
/ FAIL 

The FAIL predicate has no axioms and consequently it 

:f'al ls. Since the remaining axlom 1or NOTEQ is not

considered, there are no remaining choice points and 

�he entire proof fails. 

Conversely the goal <-NOTEQ(A 1 B) succeeds. The 

head of the axiom NOTEO{*X,*X) <- I & FAIL cannot be 

unified with NOTEQ(A 1 B) so the next axiom ls selected. 

The unification succeeds and the proof is complete. 

The ac-tion o:f the slash predicate is described 

more pre cl s el y: When the slash predicate is executed 

it removes all cholce points in the proo-f, from the 

point when the axiom containing the slash was selected 

to the current point in �he proof. 

The slash predicate ls utilized for two main 

purposes. ·The :first ls to af:fect the meaning of an 

axiom, o�tcn to handle negation as in NOTEQ above. The 

second use ls to improve the e:t.riciency of a program by 

preventing spurious choices from being considered. For 

example, consider the following axiom used to test 11'.
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�wo sets have one o� more common elements: 

INTERSECT(*A,*B)(-ELEMENT(*X 1 *A) 6 ELEMENT(*X,�B}. 

If a ca�l to the INTERSECT predicate succeeds and then 

backtracking returns to -that point, then 

axioms will cause other choices Lor *X to 

the ELEMEN1' 

be tried. 

Normally the attempt to find a di1£erent common element 

ls completely unnecessary since it has already been 

proven that *A and *B intersect. This extra search can 

be eliminated by 

INTERSECT: 

using the :following axlom .:for 

INTERSECT(*A,*B)(-ELEMENT(*X,*A) G 

S /a 

ELEMENT{ ,:ex, * B ) 

A PROLOG program consists 0£ a sequence 0£ symbols 

belonging to a symbol vocabulary. In th.is 

implementation the EBCDIC character set is used. Any 

one byte value is a valid symbol, even thou�h it may 

not have an explicit EBCDIC graphic code. These symbols 

are divided into fou r groups as follows: 
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(a) �£�1££§ - The upper case letters £rom A to z.

( b ) J2.i.iti .1§ - The di g i t s .f r om O t o 9 • 

(c) f.!.!.ru;.i.y£!..!l..2n .SJ[m.Qfil§ - This group consists of 

the le:ft and right parentheses t the 

comma, the apostrophe, the quote and the 

end-of-term symbol(the perlod). 

( d) S12e�l.a l SyrnLQ ls This grpup consists of all 

symbols not in any 01'· the three 

preceding categories. 

The ::fundamental syntactic construct in PROLOG is 

the term. As stated earlier, a term may be a variable, 

a constant or a skeleton. 

A Vi'H' iable 

:followed by tlw 

is represented by an asterisk(*}, 

variable name. The variable name ls a 

sequence o� letters and dlgits. Thus *X, *A1B2C3, and 

*37 are all variables. In addition a single asterisk is

a variable 0£ a special sort. It is called an anonymous 

variable and has the special slgni£1cance that each 

occurrence ls considered to repres��n t a distinct 

var.lab le. 

A constant ls a sequence o:f symbols enclosed in 

apostrophes. The sequence represents the value o::f the 
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constant. Note that 11: the value c: 11 ta ins an 

ar;.,strophc, then the apostrophe .. must. be duplicated. 

Examples of constants are: 

1 ABC 1 

1 37+A) 1 

I p It I 

' t 

The value of the third constant shown above consis�s 0£ 

the three symbols .right parenthesis, apostrophe and 

comma, in that order. The value-of the last cons·tant 

consists o:f no symbols. The apostrophes enclosing a 

constant are not always required. They may be omitted 

1-f any of the ±allowing conditions are satis1ied: 

1/ The value of the constant consists e ntirely of 

symbols which are letters or digits. 

2/ The value o-f the constant consists o:f one 

symbol which is not a punctuation symbol. 

3/ The value of the constant consists of the 

single period symbol and the constant is not 

followed by a blank. 

4/ The value of: the constant consists o.f two 

symbolH which belong to the list of declared 

special charac�er pairs. This list ls dynamic 
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In-tegers 

criteria. 

in nature and ls 

Predica:Les ln conjunction with the OP bu:lt-

in predicate. The initial list of special 

pal rs cons is ts of a sl nfzl.e entry ::for 11 <-" •

are constants 

A constant 

whose values satisfy cer-tain 

ls an 1.n.iggg� if and only i.:f it 

satis±ies any of the following! 

1/ Its value consists of one or more digits. 

2/ Its value consists of the symbol n+n :followed

by one or more digits. 

3/ Its value conslsts o� the symbol n_u followed

by one or mor e digits. 

Inte�ers may be used as arguments to several built-in 

predicates whlch perform the fundamental operations of 

integer arithmetic. Two integer constants are 

equal(i.c. indlstingulshahlc) i.f their values are the 

same a:fter any 11 +" symbols and leading Z'-H'oes have been 

dropped. Thus 001, 1 +uoo1• and 1 are all equal 

integers. Note that signed integers must be enclosed in 
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apostrophes. 

A constant wll1ch ls not an integer is an atom. AB, 

•AB(•, • + 1 and 1' are all J.toms. A sequence of symbols 

which satisfy 

l.den.1.l.£ l!lr...t. 

the c rl teria :for a.n atom ls called an 

A skeleton consists of an .identi:fler and one or 

more argument terms. Both predica�es dnd functions are 

representF� as skeletons. A skeleton has the ±allowing 

:format: 

<idcnti£ier> ( <argument list> ) 

The argument l.ist 

separated by commas. 

FACT( 1 ) 

G( 1, *X, F{ 1 ) ) 

1A/. )' (>:'X,*Y)

consists OI one or more 

Examples o:f skeletons are: 

terms 

Note that any o� the argument terms of a skeleton may 

in turn be skeletons. 

To permit a more convenient r�presentatlon for 
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skeletons, identiLlers can be declared as in�lx, prefix 

or suf:flx. For example1 

declared as infix then 

11 the ideni:lfier LIKES 

the skeleton represented 

LIKES(A,B) can also be represented as A LIKES 

ls 

as 

B. 

Similarly, if the identifier l ls declared as su.:f:fix 

then !(A) can be represented as A!. 

An identifier used as the skeleton identifier in 

infix, pref Ix or su:f.1:lx form is called an 

The use of operator notation is provided in addition to 

the basic notation skeletons whJ.ch was :first 

described. The two "1:orms may be mixed :freely. For 

example, if LIKES is declared as infix then F(A LIKES 

B 1 LIKES(C,D)) is a perfectly acceptable .:form. A term 

is represented ln £.fiDQn.ica.l. .!.Q£ID. when it ls represented 

without using infix, pre�ix, or suffix notation. 

In any term• subterms 

indicate the term structure. 

may be parenthesized 

For example: 

to 

A+(B-C) is equivalent to +(A,-(B,C)) 

but (A+B)-C ls equivalent to -(+(A,B),C). 

Any term or subterm may be parenthesized. 

infix then {(A)) LIKES {C LIKES( D ) ) is 

equivalent to LlKES(A,LlKES(C,D)). 

l f Ll .K.ES is 

a valid term 

An ldcnti£ler can be declared as both pre.fix and 
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in�ix simultancous·.y but 

declared 

pre.fix. 

as suffix can not 

An identi:fier is 

an i.dent i.i: ier 

be dee la red 

declared by 

which is 

as infix or 

adding a.n 

operato� declaration axiom. The :format :for the axiom 

to he added ls! 

OP( (ldent l:fler>, <type>, (priority> ) • 

(identl1ier> is the identifier to be declared. 

<type> speci£ies the declaration -type and may be 

any 0£: PREFIX 1 SUFFIX, LR, RL-

(prlorlty) ls a positive integer less than or 

equal to 1000.a 

The decl.a-ration types o:f SUFFIX and PREFIX have an 

obviou� interpretation. The types RL a.nd LR are used 

to declare operators as infix right-to-1.e:f� and le:ft-

to-right respectively. For example, lf 11• 11 is declared 

as RL then 

A.B o NIL is equivalent to A.(B.NIL) 

I:f 0 + 11 ls declared as LH then 

A+B+C is equivalent to (A+B)+C 

- 33 -



the 

�n<l to +(+(A,B),C) 

The priority speci£led 1n the declarations gives 

poriltlon of the declarations in a priority 

hierarchy. The larger the numeric priority the 

stront:Zer the 11 binding 11 o:f the operator. The :fol lowl ng 

examples illustrate the £unction of. the pr i o l" i ty. For

these examples assume that the following declarations 

are in ei:-fect! 

Then: 

OP(-,,PREFIX,40). 

OP(!,SUFFIX,70). 

OP(.,RL,50). 

OP(+,LR,60). 

OP(-,LR ! 60),. 

-,A! is equivalent to ,(A!) 

A+ B-C • D+ E • F is equiv al en t to ( ( A+ B )-C ) • ( ( D+ E ) o F ) 

�A+B! ls equivalent to ,(A+(Bt )) 

The problem o:f resolving the cu.Be where two 

identl:flers have equal priorities but dl.fferent
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dee lara·t ion -types has not yet been discussed. For 

instance J:f the declarations in effect ar-0: 

OP(+,LR,60). 

OP(-, RL,·60 )o 

then how is A+B-C to be interpreted ? 

The rule £or resolvlng such conflicts ls: 

If the rightmost operator is declared �L and the 

le£tmost operator is PREFIX(or RL) th· n treat 

-the rightmost binding as the strongest.

Otherwise treat the le£tmost binding as strongest. 

The example A+B-C ls equivalent to (A+B)-c. This de�ail 

ls confusing, and it is recommended that the user not 

declare operators with the same priorities and 

. di:fferent types and hence avoid the condition 

completely. The above description ls included solely 

�or �he sake of completeness. 

The initial state o:f the .Pl<OLOG system in.eludes 

several operator declarations, namely: 

OP((-,HL,10). 
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OP(<-,PREPlX,10). 

OP( J ,RL, 20 ). 

OP(StRL,30). 

OP(-.,P.REFlX,40). 

OP(• ,RL, 100 ). 

Operator declarations can be added and deleted by 

adding aad deleting axioms �or the OP predicate as 

described in �ii Databasg Pr..gdica.1es. 

An input term must be delimited by an end=.:Q1:-tei:m 

£.h!!.r..2<.� t er..!!.. The per l od is used. To distinguish between 

the use o� the period as an operator and its use as the 

end 0£ term charac�cr, the £ollowinR rules are used. A 

period that is not enclosed in apos-trophes, double 

quotes or comment delimiters ls treated as an end of' 

term delimiter 1£: 

(a) it is Iollowed immediately by one or ruore 

blanks or 

{b) it is the last character of an input line. {By 

line we meun either an input line from 

the terminal or an input record .from a 
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:fil.c). 

Blanks may be freely used in the input term, 

subject to the �ollowlng conditions: 

(a) Blanks may not be used Jqternal to an unquoted

ldenti:fler or constant AB :ls 

di:f1erent :from A B  since AB is a single 

identifier and A B represents two 

identlLers, namely A :followed by B). 

( b) Blanks may be used ln a quoted constant or 

ldenti:fler but they are included in the 

value o1 the constant(e.g. 

the same constant as 'AB'}. 

1 .A. B' is not 

(c) One or more blanks rnust be used to separate 

the :foll.owing: 

( 1) two quoted ldenti.f.ie rs or 

constants(e.g. 1 A 11 B 1 

constant with value 

represents 

represents a 

A'B whereas 

two constants 

with values A and H respectively). 

( 2) two unquoted 

constants where 

solely of special 

identifiers or 

neither consists 

characters(e.g. 

A; ls equivalent to A ; but A12 is 
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not equivalent to A 12). 

(d) Blanks must not be used after a period e�cept 

where the period is an end-o:f-term 

delimiter. 

Whenever one or more blanks may be used, a comment may 

be inserted. A £.Ql!!.lll.!.Ul.1 has the t'orm: 

/*<comment characters>*/ 

<comment characters> may be any sequence oI characters 

not including an as�erisk followed immediately by a 

slash. Note that this .i'ormat f'or a comment implies 

that it I is declared as a pre1ix or in.i'ix operator and 

is used £o1lowed by a variable then a blank must appear 

between the / and the :1,, of the V;;triable. To help detect 

errors caused by an improperly closed comment a warning 

message ls issued i£ a /* is encountered in a comment. 

Axiom and goal statements are special cases o:f 

ter.ms. They are read and parsed using the operator 

declarations. Thus the axiom A(-DSC could also have 

been entered as (-( A, t;( D,C) ). 

term oL the £orm! 
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<-((goal conjunction>). 

An !!.Kl.Q.!!! is a term o:f the :form: 

(-((head>,<goal con.Junction>). 

or <bead>. 

<head> can be an atom or a �keleton. 

e.g. A

A( 1, *X) 

'B:'{*) 

<"oal conjunction> can have the form 

(goal literal) 

or -the :form 

&((goal 11-teral),<goal conjunction>) 

(goal literal> can be an a�om,skeleton or a variable. 

A variable goal li-teral is called a meta variable and 

ls described in ;J.i.]_ ;gx.g�l.QD .QQD.i.!:Q.1- Predicates. 

A 1.i§..! 

example the 

represented 

-formed wl-th the 

and the <�llf!-o.1=.l.J...st rna.rl.er NIL. 

list with elements 

as A.B.C.NIL or in
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and C 
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l.l...§.1 

For 

is 
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.. 1 A,.( n, .( c,NIL l) ). empty list is represented as 

NIL. is a list o:f characters, or more 

precisely, a list constants each with a single 

charact\.· r value. An abbreviated �ormat ls provided to 

represent strings. The format ls! 

n(characte.rs>n 

F'or example: 

11 ABC 11 is equivalent -to A.B.Cc�IL. 

"{ )11 is equivalent to 1 ( 1 • 1 )1 .NIL. 

An empty list may also be specliied: 

nu ls equivalent to NIL. 

Note that "AB n is equivalent to .(A,.(B,NIL)) 

the period is declared as ln�ix righ�-to-le£t. 
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The implementation provides several bullt-ln 

predicates. These predicates provide :facilities which 

it ls elther impo5slble or inconvenient :for thH

programmer to implement dl.rectly in PROLOG. Many 

built-in predicates have side e :f .f ec ts 7 particularly 

The h u .i L t - in those associated 

predicates can 

predicates do. 

wlth Jnput 

succeed or 

and output. 

fail, exactly 

They can also terminate with 

message if the arguments are inappropriate. 

In general it is no-t poss.lb le to add 

as other. 

an error 

axioms i.or 

built-in predicates. The single exception to this is 

the OP bu.ilt-ln predicate described .in 3.1 Q.Qtaba.§£. 

The built-in predlcates are divided lnto seven 

groups. The groups and their members are: 

Structural Predicates - ATOM, CONS, INT, 

VAR .. 
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Input/Output Predicates - NEWLINE, READ, READCll, WRITE, 

WR;TECH 

Arlthme�ic Predicates - DIFF 1 PROD, QUOT 1 REM, SUM 

Workspace Predicates - CLEAR, COPY, LOAD, 

WSID 

PCOPY, SAVE, 

Database Predicates - ADDAX, AX, AXN, CONTROL, DELAX, 

OP 

Execution Control Predicates ANCESTOR, RETRY, 

1 ' FAIL, ERROR, STOP, 

/, s, 

meta 

variable 

Miscellaneous Predlca�es - DIGIT, LETTER, EOt GE, GT, 

LE, LT, NE, 

The predicates 0£ each o� �he above groups are 

described in th� �allowing sections. 
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These predicates provide £or altering and testing 

the structure oI terms. The predicates are ATOM, INT, 

VAR, SKEL, CONS, and STRING. 

ATOM, INT, VAR, and SKEL each have a single 

argument. If the argJment ls o± the type speci£ied by 

-the predlc<'t te name• namely an atom, integer, variable 

or skeleton respectively, then the predicate succeeds. 

Otherwise the predicate £alts. In no case is any

substitution performed or are any error messages· 

produced. 

Example: 

TEST(*X)(-INT(*X)6TESTINT(*X). 

TESTC*X)<-ATOM(*X)6TESTATO�(*X). 

/* USE TESTINT TO PROCESS AN INTEGER AND TESTATOM 

TO PROCESS AN ATOM *I 

Suppose we wish to de:flne an axiom which is passed 

a skeleton and prints the skeleton nume. In order to do 

th.ls we 

decomp<>se 

OE�ed the CONS predicate. It is used 

a skeleton into a list consisting o� 

to

the 

skeleton nurne following by lts arguments. For example 

- 43 -



the call <-cONS(*X,A(B)) will cause *X to be unl.fied 

with A.B.NIL. CONS may a:.so be used to construct a 

skeleton term from a list consisting o:f the skeleton 

name :followed by lts arguments. For example the call 

<-COi-J'S(F. t.cx.3 .. NIL,*Y) unifies *Y with F(*X,3). CONS 

treats a constant as a skele ton of 0 arguments, as 

shown in the· examples below. I:f the second argument ls 

not a vari"'-ble then a list consisting o:f the skeleton 

name :followed by i ts arguments is unl:fied with the 

:flrsi: argument. If' th� second argument is a variable 

then a skeleton is cons-tructed �rom the Lirst argument· 

and unified with the second argument. In -this case the 

first argument must be a list whose ilrst element is a 

constant and whose remaining elements are to be the 

arguments. I:f the :first element o:f the list .is an 

integer then there must be no more elements in the 

11st, since 

Examples: 

an integer is not a valid skeleton name. 

The �ollowlng calls succeed. 

(-CONS(ATOM.NIL,ATOM). 

<-CONS(lO.NIL,10). 

<-CONS(A.B(C).D.*XeNlL,A(B(C),D,*X)). 
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The following uxlolli accepts a skeleton ah a 1irst 

argument and returns ln the second argument a skeleton 

like the :first but with an initial argument o:f 99 

added. 

EXPAND(*SK1 1 *SK2}<- CONS(*N•*ARG$,*SK1) S 

CONS(*N�99.*ARGS,*SK2). 

St1ppos.a we wish to determ�ne an constant 

contains the letter A in its value. J-f the 1:irst 

argument oL the STRING predicate is a constant then the 

second argument is uni±iect with the list 0£ characters 

in the value o.f the constant. The :following axioms 

de£ine a predicate CONSTANT(*X} which succeeds 11 *X is 

a constant containing an A. 

The 

co::.rnTANTA{ '�CCN) <- STRING( ,:,coN f ):,LIST) f; 

LISTA{ >:'LI3T ). 

LISTA(A.*REST). 

LISTA(*FIRST.*REST) <- LISTA(*REST). 

STRING predicate may also be used to compose a 

constant from the list of symbols in its value. There 

are two possible :formats for a call to STRING: 

(a) The first argument is a constant. The constant
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is dee 01:.posed to create a list whose 

elements the symbols in the 

constant•s value. This list is uni:fied 

with the second argument. 

(b) The flrst argument is a va r i ab L e • The second 

argument must be a list of' zero or more 

elemen·-s, such that each element is a 

constant with a va.luH consisting o:f a 

single symbol. The .£ irst ar:1;ument is 

unl:fied with the constant whose value 

consists o:f the symbols in the list. 

l:f the arguments are other than as prescribed an er ror 

message is generated. Examples: 

The 1ollowing calls succeed. 

<-STRING{ 1 AJ3C 1 , u ABC")• 

<-STR1NG( 11 ,NIL). 

<-STRING(ABC,A.n.c.NIL). 

<-STR1NG(0012,1.2.NIL). 

The 1:ollow.ing predicate accepts a constant 

flrst .argument and produces 

pre .f 1 xi ng t lw f i rs t w i th a Q. 

the second argument 

APPEND{*IN,*OUT) <- STRING(*IN,*S) S 

STUING(*OUT,Q.*S). 
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Input/Output predicates are prov.ided to allow a 

PROLOG program access to external data. A file ls 

ldei::t l:f led by a constdnt whose value ls the :file 

identl£ier. A 1i�e identifier may consist of from 1 to 

8 characters1 the -.f.i.rst o..f which must be a letter and 

the remainder must be

input/output predicates 

le1:ters or 

each have an 

digits. 

optional 

The 

:Cl le 

identifier argument� L:. thl.s argument is omitte<i the 

main input/output stream is assumed (i�e. the terminal. 

£or an lnterac�ive session). 

READ is a predicate with one or two arguments::: 

The second argument is the optional £1le identl£ier. A 

term is read 1rom the indicated file 

the f.irst argument. The term must be 

and unified with 

delimited with 

the end o:f term character. Ii: the end of the input 

file has been reached the predicate falls. I :f 

backtracking returns to the read then a read of the 

next term will be attempted. If the term read cannot 

be unified with the first argument or the 1ormat of the 

term is invalid then backtracking 

the next term to be attempted. 
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WRITE is a predic· . .1.te with one or two arguments. 

The second argument is th" optional :flle identi:fier. 

The term speci:fied by the flrst argument is written on 

-the indicated file. The term ls delimited by the end 0£ 

t e rm char act e r • The term is written using pre£.ix, 

infix and suffix notation where appropriate, as 

indicated by the ope�ator declarations at the tlme of 

wrl ting. 

READCH is a predicate with one or two arguments. 

The second argument ls the optional file identifier. A 

sing�e character ls read -from the given file. The 

constant whose value is the single character is unif�ed 

with the 1irst argument. If the end 0£ an input line 

( or record) has been reached then the £ irst charact e1 .. 

of the next llne (or record) is read. I:f the end of 

the lnput 1'.lle has been reached then the predicate 

falls. Lf backtracking subsequently returns to th.is 

point or Lf · the uni flea t ion o:f the �irs� argument and 

the character :fails, then the next character in the 

input �Ile is read and the uni£1catlon reattempted. 

WRITECH is a predicate with one or two arguments. 

The second arc.!ument is the optional file identl.flcr. 

The £lrst argument specifies a term which is formatted 
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usln� the operator declarations (as .for WRITE) a.nd 

placed in the output bu�fer £or the given file. I:f the 

buffer is flllcd then it ls written to the given rile 

{ and emptied). lf .. the buffer is partially :filled then 

1 1: is not written out. 

WRITECH predicates are not 

Note that the 

symetrical .. 

READCH and 

The WRITECH 

predicate can be used to write a single character but 

it ls considerably more general than READCH. 

NEWLINE ls a predicate with one optional arµument. 

The argument is the file ident.i:fier. NEWLINE writes 

the current output buf�er to the �iven :file and empties· 

the bu:f:fer. NEWLINE is used in conjunction 

WRITECH. For example, the goal statement: 

(-WRITECH{'CN •) 6 WRITECH(ONE) 6 

WRITECH( 1 LINE.•) 6 NEWLINE. 

causes the �allowing to be written on the terminal: 

ON ONE LINE. 

with 

Note t�at thls output is 

the call 

identical to that produced by 

<-WRITE(10N ONE LINE').

or by the call 
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<-w R 1 T .EC H ( 1 0 N O 1 ) S WR I TE ( t NE L l NE' ) •

There arc several predicates which are included to 

provide the basic operations of integer a1� 1 t hme tic. 

Each predicate has three arguments. The xirst two are 

the input parameters and the last is the result 

parameter. The £lrst two arguments must be integers. 

The appropriate Integer �unction of the first arguments 

is unl:fied with the third argument. 

The arithmetic predicates are: 

D1FF di�ference (subtraction) 

PROD product 

QUOT quotient 

REM remainder 

SUM - sum

The :following axioms define a predicate 

calculates the :factorial :function o::f its 

argument. 

FACT(0,1). 
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FACT(*X,*Y.l(- DIFF(*X,1,*Xl) 6 

FACT{ *Xl, *Y 1 ) & 

PROD(*X,*Yl,*Y). 

The :following calls succeed: 

<-DIFF( 3, 2, 1) • 

<-PROD(l0,20,200). 

(-QUOT(205,10,20). 

<-REM(205,10,5). 

<-SUM(l,20,21). 

3LQ. �Q.ck�Q�ce Predicates 

A set of PROLOG axioms is re.fer.red to

When the PROLOG system is running, 

as a 

the 

current set o:f axloms is re-ferred to as the acti.:yg_ 

X.Q r l< .tiIH!£Q...!.. 

malntalned. 

ln addition a 

A system of 

library of workspaces is 

built-in pred.icates is 

provided £or manipulatin� these workspaces. 

A. workspace ln the library is ldentl:fied by a 

workspace 

sequence o:f 

character 

ident l:f ier. A workspace ident ifler is a 

.from 1 to 8 letters or dlgits. The first 

o:f the ldenti:fler must 
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active woi'kspace alsc has a ·workspace ldenti:fier 

assocla�ed with it (re�er +� the WSID predicate below)� 

If the identi�ler of the active workspace is CLEAR then 

a SAVE predicate may not be executed without resetting 

�he workspace ldentlfler. 

CLEAR is a predicate with no arguments� It has the 

e1fect of clearing ·he active workspace 0£ all axioms 

and setting it to the initial state. 

LOAD ls a predicate with one argument. The 

argument must be an atom whose value is a valid 

workspace identifier. The active workspace is loaded 

from the l.lbrury workspace with the speci.fied 

ldentl�ler. Any axloms or terms ln the original active 

workspace are lost. The workspace identl£ier in the new 

active workspace is set to that of the workspace which 

was loaded. 

SAVE is a predicate with no arguments. It causes 

the active workspace to be saved in the �lbrary member 

specif led by the workspace ldenti£ler in the actlve 

workspace. The active workspace is left unchanged. 

WSID may have zero., one or two arguments. When 

used with no arguments it causes 1.he wut"kspace 

ldentlfle1" associated with the active workspace to he 
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dlsplaycd. When used with one argument, the argument 

must spcci.fy a valid "·"->rkspace identi:Iicr. The 

workspace identifier in the active workspace is res£�t 

to the specl:flcd value. When WSID is used with two 

arg\..oments an attempt is made to uni:fy the current 

workspace identifier with the second argument. I:f thls 

unification succeeds, the current workspace Identifier 

Ls reset to the value specified by the £irst argument. 

The £lrst argument must be a valid workspace identlLier 

or an error occurs. 

COPY is a predlcate with one or two arguments.< 

The :first argument always speci:fles a workspace 

identif'er� is copie(i Into the ac�ive workspecB 

:from the llbrary workspace with the given identi1ier. 

I:f a single argument is speci£ied then all axioms and 

operator declarations are copied :from the 

workspace. If a second argument is speci£led 

library 

then it 

must be an identifier (i.e. an atom). All axioms and 

all operator declara�ions £or the given ldentiLier are 

to When an attempt ls made to copy the 

axioms :{ 0 .r a given pre<Jica.te name and number of

arguments a check is made to see if any axioms exist 

.for that name and number o� " arguments ln th e active 
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workspace. l:f any such uxloms exist they ...1.r,3 deleted 

be.core the new axioms are copied in. Simi tarly 1.1'. an 

operator declaration :for dn identi:fier ls :found in the 

library workspace then all <:eclara t l ons .for the 

operator in �he active workspace are deleted and the 

new declaration is added. 

PCOPY ls a predicate with one or two argumen�s. It 

ls similar to COPY but l·t per:f ol:"ms a protected copye 

The dl:f:ference is that PCOPY ne�er deletes axioms or 

operator declarations 1rom the active workspace. When 

the situation arises which causes COPY to per.form a 

deletion, PCOPY 1eaves the active workspace data intact 

,:u .. d does not copy �he axioms or operator dec1ara�lons 

in question. 

J�_!i Dataua� Predi�ate§ 

The database built-in predicates 

facility for updating the database ( i.e. 

axioms in the active workspace). The 

provide 

the set 

the 

of 

predicates 

provided are ADDAX, AX, AXN, CONTROL, DELAX and OP. 

The ADDAX predicate is used to add an axiom �o the 
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database. lt has one 0� two arguments. The :first 

a1�ument must be a valid axiom. It may be: 

(a) a unit axiom. In this case lt is a skeleton or

an atom. 

(b) a non-unit axiom. In this case it ls o'f 1.he 

:form must he a 

skeleton or atom. 

The axiom speci�led by the Iirst argument ls added to 

the database. If a sJngle argument is specified then 

the axiom is added a1ter all other axioms with the same 

predicate name and number o:f arguments. If the second 

argument is speci:fled it must be an lnte#e.r or a 

We first explain the case oX a call with two 

ar�urnents where the second ls an integer. This integer 

specifies where this axiom is tn be added, as an index 

in the list 0£ a1l axioms for the same predicate name 

and number o:f arguments. Consider the :following list 

o:f axioms: 

A( 1 ). 

A( 2 )(-B. 

A( *X )(-C( *X ). 

A( 4 ). 

I:f the predicate call 
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<-ADDAX(A(M),SJ. or <-ADDAX(A(M),100). were t5sued then 

t�� new list would be: 

A( 1 ). 

A{2)(-B. 

A( *X )(-C( *X ) .. 

A( 4 ). 

A( M ). 

IL the call <-ADDAX(A(Q),1). were 

would become: 

A(Q ) .. 

A( 1 ). 

A( 2 )<-B. 

A( *X )<-C( *X ). 

A( 4 ). 

A( M ). 

then issued the 11st 

The index specified gives the index in the list where 

the axiom ls to be added. II the index is 1 or less 

then the axiom ls added be�ore the £irst axiom in the 

list. Similarly if the index ls greater than the index 

o:f the last axiom then the new axiom is added at the 

end of the list. 

If' ADDAX ls called with a second argument o:f a.

varidble, the uxiom specl1led by the_ 11rst argument is 

- 56 -



added at the end o.£ the list and lts ind·,x ls then 

ur_.:.fied with the second argument. 

The DELAX predicate is used to delete an axiom 

1'.rom the database. It may he called with one or -two 

arguments. The Llrst argument is a term representing an 

axiom. The first argument may be! 

(a) a unit axiom. In this case It ls a skeleton or

atom. 

{b) a non-unit axiome In thi.s case it is oi the

:form <heaa><-<bo<iy). <head> must he a

skeleton or atom. 

Thus the :first argument s�eci:fies the name and 

n\Hnher o:f arguments £or the axiom i:o be deleted .. I:f 

only one argument is specified then an attemp� is made 

to unify the argument with each o:f the relevant axioms 

in the database. The axioms are selected in the order 

in which they appear in the database. I .f no axiom is 

'found which is unifiable with the first argument then 

the predicate �alls. l:f the unification succeeds :for an 

axlom then the axiom is deleted and 

succeeds. 11 backtracking subsequently 

the predicate 

returns to this 

point then the prt!dicate will fall, thus preventing 

accidental deletion o� further axioms. 
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If two arguments are speci:ticd then the second 

argument ls considered to be the axiom Index. ·lt may be 

a variable or an integer. The attempts to uni :fy the 

-first argument with the database axioms proceeds as in 

the case o:f (>ne argument. I:f the unlfcatlon succeeds 

£or a given axlom then an attempt is made to uni�y the 

axiom index with the second argument. I:f t �1 e at ·tempt 

fails then the search through the axioms is resumed. I£ 

the attempt succeeds then the axiom is deleted and the 

predicate succeeds. .I "f backtracking subsequently 

returns to this point then the predicate will £ail. 

The AX and AXN predicates are used to retrieve 

ax1oms �rom the database. The AXN predicate re�rieves 

axioms uslng the predicate name and number o.f 

arguments. The AX pred.icate retrieves axioms using a 

model axiom head. 

The AXN predicate has either 0£ the two £ollowing 

:formats: 

AXN( <name>,<nargs>.<axlom> ) 

AXN( <name>,<nargs>,<axlom>,<Jndex> ) 

The predlca.te call AXN(C,2,*A) will cause *A to be 
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uni.tied U(ith the £lrst axlon1 :Cor predicatJ C wi�h 2 

ar�umcnts. I:f there are no axioms :for C with two 

arguments then this call would ral L. I.f 'the call 

succeeds and backtracking subseq,�ently returns to this 

point then an attempt wil� be made to unify *A with the

next axiom :for C with two arguments, a nd so on. The 

predicate call AXN(C,2,*A,*1) iunctions identically 

except that when the call succeeds, *I is unl:fled with 

the 1.nuex. of the axiom uni:fied with *A• Similarly the 

call AXN(C,2,*A,3) will retrieve the third axiom ±or C 

with two arguments, if one exists,. The predicate call 

AXN{C,*N,*A) will uni-fy *N with O and uni:fy *A with -the 

.first axiom :for C with 0 ar�uments. I :f thls 

unification fails or backtracking returns to this point 

then the next axiom for C with C arguments is selected. 

When all axioms for C with O arguments are exhausted 

then *N is unified with 1 and the axioms Lor C with 1 

argument are retrieved in turn. This process can 

continue until all the axioms £or C have been examined. 

The :fourth .lndex a·rgument may be inc-ludcd and it 

functions analogously to the previous case. For example 

the goal statement: 

(-AXN(F,*,*A)&WRITE(*A)SFAlLo 
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lists all axioms .for predicate F. 

The �oal statement 

(-AXN{F,*N,*,1)6tRITE(*N)SFAIL. 

wr.ites out the di:fferent number 0£ 

which F has an axiom. 

arguments ::for 

The call AXN(*NAME,*N,*A) can be used to examine 

-the axioms for each predicate name ln turn. Flrs-t a 

predica-te name is selected -from the da.tabu.se and 

unl.fied with i:he first argument. Then en:ch o:f the 

axioms :for this predicate are examined in turn as in 

the previous examples. A:f ter the last axiom for 1:he 

given name ls examined then the £irst argument will be 

uni1ied with another name in the database and the

search will con-tinue� The order in which the predicate 

names are examined is not readily predictable since it 

depends Oll the hashing algorithm of this 

implementation. 

considered to 

Consequently this 

be arbitrary. The 

order should be 

statement will cause all axioms ln the 

following goaL 

datu.base to be 

listed: 

<-AXN(*,*,*A)SWHITE(*A)GFAIL. 

The AX predicate functions 
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slmilar �o the AXN �rcdicatc. Again there are two basic 

formats: 

AX(<bcad>,<axiom>). 

AX(<heact>,<axiom>,<index>). 

<axiom> and <Index> are treated exactly as for the AXN 

predicate. <head> is a model axiom head and may be a 

ske le·ton, ci·� atom or a variable. If <head) is not a 

variable then it speci�ies a predicate name and number 

of arguments implicitly. The axioms £or thls name and 

number 0£ arguments are examined as £or AXNc 1£ <head) 

is a variable then all axioms in the database are 

examined in �urn as :for AXN{ *,:-:�,*A). I :f an a�iom 

uni:fies with 

axiom h,2ad 

the specl:fied axiom 

is unified with the 

then a model oj: the 

fi.rst argument. By a 

model we mean a skeleton with anonymous variables i:or 

alt arguments. The model idea is introduced so tha.t a 

theorem prover written in PROLOG may use AX to retrieve 

the axioms relevant 

actually unifying the 

term. 

to predicate term without 

axiom head and the predicate 

The OP predicate is used to manipulate operator 
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declarations. I ts use was .introduced ln �.1 .I...t.st · §yn.i!l� 

Adding a unit axiom·.for the O.P predicate 

(with 3 arguments) ls equivalent to adding an operator 

declaration. Similarly, deletir:� a unit OP axiom 

deletes the operator declaration represented. Thus one 

can delete an operator declaration with a call 0£ the 

:form: 

DELAX(OP(<operator>,<type),(priority))). 

where: 

<operator> is an atom identi�ying the operator. 

(type) ls an atom specifying the declaration type and 

may be any one of LR,RL,PREFIX or SUFFIX. 

(priori�y) may be an integer or a variable. 

I:f a matching declaration is �ound it is deleted. 

A ca�l to the OP predicate may be used to retrieve 

an operator declaration, For example, the call 

OP(.,RL,*P) succeeds Lf "•" is declared as RL. In this 

case *P would be unl�led with the pr.iority. The call 

OP( • t ;� T, * P ) succeeds i:f -the re is an operator 

declaration :for "•" The �ollowing goal sta-tcment will 

list all PREFIX operators: 

(-OP(*OP,PHEFIX,*)6WRITE(*OP)6FAIL. 

In this case backtracking to the OP predicate 
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c�uses each pre£lx uccl�rution to be retrieved ln turn. 

No1:e that the order in which the declarations are 

retrieved is pseudo-random and not the order in which 

"the original declarations were ddded. However 1:1.:. an 

operator is declared as both pre.f lx and i n:f ix, the 

pre�ix declaration ls always retrieved first. The 

-:following ,goal statement will list all· ope.rator 

decla.ra t.ions! 

(-OP(*OP,*T,*P)SWRITE(OP(*OP,*T,*P))SFAlL. 

CONTROL predicate is used to provide some The 

special global variable facilities. The CONTROL 

predicate has iwo arguments, a hg� �nd a r..�lt.!.. For 

example, the call (-CONTROL(TOP,*X) retrieves the 

result corresponding to key TOP and unl�ics this result 

with *X• The key and result pairs are manipulated ln a 

£ashion similar to operator declarations. To add a key-

result pair, an axiom for CONTROL is added. Adding the 

axiom CONTROL(TOP,3) records result 3 for the key TO?. 

Only one pair Cd.fl be recorded for any key value. I .t a

pair exists with the same key as one being added, then 

the previous pair is replaced. The key must be an atom. 

The result associated wlth the key mu:3t be an a.tom or 
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an integer. 

deleting the 

A key-result 

appropriate 

pair may be deleted by 

axiom :for the CONTROL 

predicate. For example (-DELAX(CONTROL(TOP,*)) will 

delete the key-result pair with key TOP. A subsequent 

call of the 1orm (-CONTROL(TOP,*) would Iail sine(� no 

pair exists. The call (-DbLAX(CONTROL(TOP,09)) would 

succeed only i :f the key-result pair of TOP-99 ls 

currently recorded. The key-result pairs recorded in 

the data base may be queried in a manner simi la.r to 

that used £or operator ceclaratlons. For example:: 

lists all key-resul� pairs in the data base. 

<-CONTROL(*K,99)SWRITE(*K)SFAIL. 

lists all keys with a result 0£ 99. 

<-CONTROL(I,*R}SSUM(*R,1,*R2)&ADDAX(CONTROL(I,*R2)). 

increments the result integer corresponding to key I. 

The CONTROL built-in predicate 

certain special keys to control 

key VERBOSE has an associated 

ls also used with 

system options. II the 

result of ON the 

system lists any goal statements which succeed. 

the 

The 

goal statement <-<goal conjunction> is written in the 
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f. orrn (goal conjunction><-, display i.· g any 

The in-:tantiations made :for variables in the proof-, 

goal statement <-SUM(2,2,*} causes SUM(2,2,4)(- to be 

written on the terminal. 1-f the key VERBOSE does not 

have result ON, then a success1ul goal statement ls n�t 

listed. 

If the key NOAX has an associated result of ON 

then the system indicates each call to a predicate for 

which there are no axioms (and no compiled routines). 

For each such call a massage o-f the form 0 NOAX - xxxxx 

nn" is displayed. xxxxx is replaced by the pred1cate 

name and nn ls replaced by the number o:f arguments. 

With th.is �eature, the goal <-SUM(1 1 2.3JIPRODQ(3,4,12) 

causes the £allowing messages to be displayed: 

NGAX 

NOAX 

? 

SUM 2 

PRODQ 3 

This feature ls initially enabled and may be disabled 

by deletin&J the CONTROL( NOAX, ON) 

CONTROL(NOAX,OFF). To enhance the 

feature, the FAIL predicate (with 

axiom or adding 

usablllty of 

no arguments) 

this 

is 

included as a bullt ..... in predic.t.:i.te which always fails. 

Thus spurious messages of �he form NOAX - FAIL 0 are 

- 65 -



avoided. 

The k�y LOWER ls used to control the transla,ion 

of input from the main input stream. If LOWER ls set to 

ON then lower case letters 1rom the terminal are input 

as lower case. I� LOWER is not set to ON then lower 

case letters rrom the terminal are translated to upper 

case as they are input. LOWER ls initially se� to OFF. 

�.7 Execution .Qgntrol f.rg_di.£�!.g§_ 

The execution control p.red ic a -t��s provide 

facilities for testing and controlling the progress of 

a proof. The ANCESTOR, RETRY, /, S, I, FAIL, ERROR, and 

STOP predicates are included and the meta variable 

:facility is also provided. 

The n�r_gn� or a given literal in a proo:f is the 

literal which invoked the axiom containing the given 

literal. In the implication tree describing the proof, 

the parent literdl labels the node above that labelled 

with the literal. literal include 

its parent and its pu.rent•s dncestors. The ANCESTO�

predicate is used to examine the ancestors o:f the 

- 66 -



literal which invok - d  the predicate. When ANCBSTOR ls 

used with one argument, the argument is unl�led ··1th 

the most recent ancestor £or which this is possible. I:f 

the argument cannot be uni-fled with any ancestor, the 

predicate falls. I.:f the predicate succeeds and 

subsequently backtracking returns to this point in the 

proo:f, the argument is unified with the 

recent ancestor and so on. The .foll. ow i n g 

1.,ext most 

axiom will 

lis-t all 01 the ancestors of the ANCESTOR literal and 

then :fall. 

LISTANC<-ANCESTOR(*A)6WRITE{*A)SFAIL. Note that 

the :first ancestor l.isted will be LISTANC. 

When the ANCESTOR predicate is used with two

argumen-ts the £irst argument �unc�ions in the same way 

as the single argument above. The second u.rgument ls 

the a�stor index. For a given literal the ancestor 

index o:f l ts pa!"ent ls 1, the ancestor lndex of its 

parent's parent is 2, etc. The -first argument is 

unl�led with each ancestor in turn as above. l.f this 

unification ls successful �hen the second argument is 

unl:fled wi-th the current dncestor index. The following 

axiom will list the .five mos-t recent ancestors o.f the 

ANCESTOR literal: 
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L1STANC2<-ANCE�TOR(*A,*N)6WR1TE(*A)6EQ(*N,�). 

The RETRY predicate ls provldt.�d to :facilitate 

recovery from an error situation. Aiter a correction 

hus been made, the proof rn'.l.Y be restarted .:from some 

point be�ore the error. RETRY has one or two arguments 

which control a search through the ances�ors �xactly as 

for ANCESTOR. The difference is the action taken upon 

success. II an appropriate ancestor ls found, the proof 

is ha.eked up to the point where the subproof f'or the 

ancestor literal began and the proo± is resturted Lrom 

that point. RETRY restores the proo£ to the state it 

had at a particular• point in the past. Consequently 

RETRY is only use1ul when some change has been made to 

the axloms. 

The slash predicate with no arguments was 

described 

The slash predicate ls also provided in a more general 

:form with either one or two arguments. The arguments 

control a search through the ancestors exactly as for 

ANCESTOl< and I'l'.ETRY • l .f this search fails then the 

predicate �ails. If the search succeeds then certain. 
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available choices ure cl imina te<l :from an existing 

portion of the proof:. All choice points are removE:·: in 

the var-t of the proof £rom the point o:f selection o.f 

the givPn ancestor literal to the current point in the 

proo.f. Thus a call of the .form /( *) has 

same e±1ect as the simple nullary / call. 

1ol�owing example: 

A <-BSC f;D • 

D<-E. 

c<-FSG. 

p _. 

G(-/(C)f;H. 

<-A • 

• • •  

exuctly the 

Consider the 

The implication tree has the following :form when the 

unary sLash is called: 
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gna1 
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I \ 

I \ 

� 

I 
I \ 
F 

X I \ 

\ 

/( C) H 

Al� choice points �rom the selection of c<-FGG onward 

are e"l.imina ted. Thus if H £alls an alternate proo£ £or 

E wil� be attempted 

deleted). 

(and the subproof o� C will be 

The meta variable £acitity allows a variable to be 

used ln place of a literal in a goal or in the body of 

an axioni. When the variable ls encountered in a proo± 

it must be bound to a literal. The proo± proceeds as 1£ 

this literal occurred instead of the variable. For 

example, the :following axiom defines a predicate EXEC 

which reads a term and 11 cxecutes n it. 

EXEC(-READ(*X)�*X• 

Axioms are included for the 
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predicates. The axiom..:; fo!' are!

l<*X,*Y)<-*X• 

I ( *X, *Y ><-*Y. 

These axioms allow alternatives to be specified in a.n

axiom body or goal with �he desired ef:fcct. The a.xiom 

ior G ls: 

S{*X,*Y)<-G(*X,*Y). 

This axiom may look a bit ridiculous but it is useful, 

particularly when using the meta �ariable facllltyo For 

instance, 1£ as inpu� to the EXEC axiom above, ASB is 

specified, then this axiom for 6 would be invoked and A 

and then B would be called. 

The FAIL predicate (with no arguments) is provided 

as a built-in predicate which always :fd.ils. This 

predicate is provided even tho�gh providing no axioms 

�or FAIL would yield a predicate which al.ways :fails. 

The reasons for providing such a predicate are: 

(a) The FAIL predicate gives a standard name f'or a 

predicate which always :falls. 

pro1{rammi ng standard which may 

T.his imposes a

improve program 

readability. This stu.na.ard predicate could also 

mukc it easier for a compiler to per:form certain 

optimizations. 
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(b) Thr� provision o.e the hullt-in FAIL predicate makes 

the N'JAX .feature of the CONTROL 

use.ful. Refer to the descrlptlon of 

predicate in 2.!..Q DataQ.!:!� Predicates 

detai1.s. 

.featu!"c ·1ore

the CONTROL 

£or :further 

The STOP predicate ls used to leave the PROLOG 

system. The execution 0£ the STOP predicate terminates 

the PROLOG session and returns to the operating system. 

All axioms and operator decldrations in the current 

workspace are lost. 

The miscellaneous group includes predicates to 

test the collating sequence o1 constants and to test i� 

a symbol is a letter or a digit. A collating sequence 

is de£1ned for the values 0£ constants as follows: 

(a) Any atom is less than any integer.

{b) Integers are related by the conventional. 

ordering for integers. 

( c) A toms are ordered by the lexical ordering 

imposed when the ordering o± the symbols is 
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The predicate�.· LETTER and DIGIT ea.ch have 

a.1 ... gumen t. The argument must be a constant. 

predicates test if' the value o:f the constant is 

single rYmbol belonging to the �, i vcn class. l .f 

one 

The 

a 

the 

argument of LETTER is a cons�ant consisting of a single 

capital let�er then the call succeeds. I£ the argument 

o:f DIGIT ls an lnte�er from O to 9 lncluslv� then the 

call succeeds. 

Examples! The following predicate calls succeed 

<-LETT ER( Z) • 

<-DIGIT(O). 

<-D IGl 'T{ 1 +0001 1 ) • 
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The essential £eatures of the implementation are: 

(a) Data structures for

-terms

-substitutions

-environments

-axioms

-symbols

(b) Algorithms £or

-unLflca tl on

-interpreting axioms

-backtracking

-reading; terms

-wrltlng terms

The system is implemented in OS/370 assembler 

language u.nd relics heavily on the use o:f macros to 

simplify the implementation procedure. A general set of 

progrti.m structure and linku.ge macros is used( 7 ). In 

addition several macros were written .for this 
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particular o.pplicatlon. Included in this 

macros for building teri'us and axioms 

describing table entries. 

group 

as well as 

The /370 word consists of 32 bits orgd.nlzed as 4 

bytt;!S o:f 8 bits each. An address is specl£le<l by the 

·rightmost ( Low order) three bytes in a word. Thls 

addressing organization influences the details of many 

o:f 1he do�a structures in the implementation. 

The data structures used rely heavily on those 

developed in the ori'°�inal PlWLOG l n te rpre te r. In 

particular the elegant and e£:flcient structure sharing· 

technique used therein to represent terms and 

substitutions ls used here with minor changes only. 

A symbol table is maintained for all identl:fiers 

used in the worl(space. Each identi:fier ls

asslgned a 

active 

unique string descriptor and is

character·ized by the address o:f this descriptor. Thus 

two ldentl:fiers are equal i :f and only the 

corresponding descriptor addt"esses are equalo The

symbol table is discussed :further in .1.!..1 .§ymhol J:_g_h.1.Q 

Qrillin1-za..tl.Q� 
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An i.nlll!.1 .i�rm is a term which has no s ubstitutions 

associated with it. An axiom ls an input term until it 

ls invoked in a proof, at which point substitutions may 

occur. 

An lcput term is represented by a term Y!..Q£il of the 

.form: 

C A 

where A .is an address or number and C is a one 

byte type code .identi::fying the kind o:f term 

represented. C is called the te1 .. m id�tifier 

l.h A ls called the term value. Tho types represented 

by C are .. 

( a ) a.n integer: The term word represents an 

integer. The term value is a twenty-£our bit 

sipned twos complement representation o1 the 

integer. Thus intea.ers from -8,388,608 to 

8,388,607 inclusive can be represented. 

( b) a vari<1.ble: The term word represents a 
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variable. Each variable in an input term is 

rep.resented by a ��ll.Q..lll.£. al .!H!m.!.2_g_r: ..f r o 11\ 1 to 

n, where ls the number of distinct variables 

in the term. Thus l :f the axiom 

A(*X)(-B(*Y,F(*X)). ls read, then *X ls 

associated with 1 and *Y is associated with 

2. A varlabie in an input term is represented

by a te1.--m word wl th an ID incticat.ing a 

variable and a value which is a twenty-±our 

blt d.isp laceit.ent. The displacement :for a

variable is derived directly :from the. 

canonical number o:f the variable in the 

original term. The displacement, which is 

equivalen-t to the canonical number, is used 

to reduce the calculations required to

re·trl eve the value o:f an instantiated. 

variable. The use o:f the displacement will be 

discussed :further 

Qo.nst.!:.!Jcted Terms. 

( C ) U.11 atom. The term word represents an atom. 

The term value specifies the address of a 

symbol table entry 1or the atom. The symbol 

table entry :for un identlfier is called a 
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(d) a skeleton. The term wo.rd represents a 

skeleton by specifying the address o:f a 

skeleton descriptor as £ollows: 

Term word 

)C J A ------> 

Skeleton descriptor 

JN I s I 
1-----------1 

J Argument 1 I 
1-----·------ J 

J Argument 2 I 
1----------1 

• • •

l ---------·---1 
J Argument N J 

A skel.eton descriptor occupies two or more 

words. The .:first word ls called the .§.h;ele-tQn 

Ji.�.!. The skeleton key consists of u. one byte 

count{ N) and the addrcss(S) of the st..r.i ng 

descriptor :for the skeleton name. N 

specifies the number of: argu1nen ts that the 

skeleton has. A skeleton can have £rem 1 to 

255 arguments(lncluslve). Following the 

skeleton key are N t ert,1 words rep resenting 

the a1"gumen ts o.f the skeleton. 
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The Lollowlng diu.g.:•u.;11 dhows 1.h� l"'eµrescntatlo,J o.f the 

axlom G<-B( 13, *Y, F( ,:ex)). The term IDs �or variables, 

atoms, lntepers and skeletons are repesented as V, A, I

and S �espectlvely. The displacements 1or variables 

wi�h canonical numbers 1 and 2 are �epresented by D1 

and D2 respectively. A pointer to the strlng 

descriptor for xx:x is .represented by --> 11 xxx 11 • 

Is 1 • I 
---1---

1 

I --------
-> J 2 l J-----) n<-n 

l-------1 

IA) 1----> 11 G" 
J------1 

Js I • I 
-.---1---

1 

J -------
-> J 3 I 1----) nn 11 

J-------1 

111 13 J 
1------1 

JV) D1 J 
1-----1 
ls I • I
----1---

1 
I ---------

-> 111 1--> 11 F" 
1-------1 

JvJ D2 I 
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When an axiom ls activa1:ed in a proof, an 

crea�ed for the axiom. The environmen"t 

contains in£ormatlon for backtracking. It also contains 

a description of all substltions made in the axiom. 

Thls substitution information is recorded ln a list 

called the su}2.stitutj_on list or 1.he i.nst�ntiation li.sto 

A term which has substitutions associ�ted with it 

is called a constructed When an ar,.iom is

activated, the axiom ( and all of its · subterms) become 

constructed terms. A constructed term is represented as 

an input term with an associated substitution 

environment. A cons�ructed term is an instance o� the 

corresponding input term. The value of the cons�ructed 

term 1nay be detern.tined from the value o:f the 

correspondinµ input term by using the environment to 

retrieve the substitutions made :for the variables in 

the input term. The internal representation OT a 

cons�ruc�ed term requires two words. The first word is 

the term word for the input Thi� second word 

specifies the address of the appropriate environment. 

The in stantiation list in the environment has an 
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entry for each the original axlom. Thu 

.entry :tor a specific varluble ls either mat"ked to 

indicate that the var.lab le is unassi gn'-�d or else the 

entry ct·n-ta ins a cons-tructed term giving the value o:f 

the term substituted for the variable. Thus a variable 

is instantiated by placing the appropriate constructed 

term ln the instantiation list e ntry. This 

lnstantlation may be undone during backt racl,_ ing by 

resetting the entry to 0 unasslgned"• Another importa nt 

£eature of this representation for constructed terms is 

in the area 01 storage requirements. When an axiom is 

activated an environment of :fixed size ls required. 

This ls the only space required ( in aadition 

space 1:or the input axiom), although the variables in 

the axiom Jnay be instantlated to term.s o:f a.rbi trary 

size and complexity. 

The instantiation list ls a vector o:f entries. 

Each entry ( or .Yft!.l!Q Qgl.lJ. corresponds to a variable in 

the axiom ussocJated with the environment containing 

the instantiation list. The .first instantiation list 

entry corresponds to the variable with canonical number 

1, the second entry to the variable with canonic al 

number 2 and so on. The displacement spcci£ied in the 
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term word :for a vurlable ls actually the displacement 

o� �he value cell :for tha� variable :from the beginning 

o:f the environment. Using this displacement, the value 

cell �or a variable can be re£erenced directly, with no 

search necessary. 

The �allowing diagram shows a constructed term 

representa.tion 1or the term F(3,G(*X 1 li(M)),H(M)). This 

term has been constructed l:rom 

F{3,G{*X,*Yl,*Y) by substituting H(*Z) 

substitutlna M 1or *Z• 
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Isl 1--> 1 JI 1---> "F" 

I • I JI J 3 l 
1-----1 ----1----

1 
I 
I 
I 
I 
I 
J 

ISi 1--> 
1-,,-----1 
JV J D2 I 

J 2 l 1--> 
1-------J 

1 VJ Dl I 
J-------1 

iv! n2 I 

"G" 

I --�-----------

-> I J Environment for· F(3,G(*X,Y.'Yh*Y) 
!--- --1-------1 
I unassigned I Entry 1 - Cell £or *X 
1-�----J�-----1

)SI • I • I Entry 2 - Cell :for *Y
--�-1------1�---

I I 
J I ----------------

1 -) I I Env. for H(*Z) 
I l-------1-------1 
J I I A 1 1 --> "M tt 

I 
I 
) - ---------

-> } 1 l J---) "H" 
1-------1 
)VI Dl I 

The unification algorithm used is a simple depth 

f.irst algorith11.1o The algorithm attempts to match two 

constructed i=e rms. The matching process 
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succeeds or £ails. I:f .it ::fails then the e:f.fect o:f any 

substitutions made during -:+·be unl:f.icatlon a�tempt ls 

removed (I.e. the value eel ls for any var.lables whlch 

were instantiated are reset to 11unassi�ned"). 

The unl1ication al.gorithm does not 

11occurs 11 check. These means that it will 

have an 

not detect 

that *X and not unii'.iable. An attempt to 

unlfy these two terms will 

substituted £or :::�x. Printing 

generate an n inf i nl·te" output 

cause to be 

the resultant -term wi1.l 

of' the form F{ F( F • • • 

This check is omitted 1or reasons o:f ef£lclency and it 

appears that the occurs check is seldom necessary in 

PROLOG progrumrulng. 

The st ructure sharing technique used to represent 

constructed terms requires the uni1ication algorithm to 

11 look up 11 the Vil.1ue 01 any variable that it encounters. 

The fundamental step o± �his lookup process is called 

dere.ferencing. Corresponding to a constructed term is 

a dere£erenced value which is derived as �ollows: 

(1) I£ the term word o� the constructed term does 

not speci£y a variable then the dere£erenced 

value is the constructed term itself. 

(2) I:f the input term ls an uninstantiated 

- 85 -



variable (indicated by value 

cell :ior th(:! vari..1.ble), then the d.ere:ferenced 

value o:f the constructed term is the 

constructed term itself. 

( 3) lf the term word specl:fies an lnstani:iated 

varlab1e then the dereLerenced value of the 

-term is 1:he <lere:ferenced value o:f the 

constructed term in the value cell for the 

variable. 

Note that in ( 3) above 7 a sear.ch down a chain o'f. 

references will occur in the case o.f a variable bound 

to a variable which is bound to a variable, By 

dere:ferenc i ng. all terms 1.he unii:lcation algori i: hm 

attempts to reduce the time required subsequen-tly to 

retrieve the value o:f a term. 

In the following description o:f the unification 

p1"' ocess, 1 t is assumed that all constructed terms a.re 

dere:ferenced be:fore checking them for matching. Also 

the statement "A is a skeleton" is used as an

alJbrevlatJ.on .for "The dereferenced value of A is a

skeleton"• Similarly "A ls a varlaLle" ls used as an 

abbreviation for "The dereferenced value of A is an 
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uninstantla ted The various cas�s which 

occur ln the unl:flcatlon of the two constructed teri.,s A 

and B are described below: 

( 1 > A and B arc both variables. 1± A and B both 

refer -to the same variable the 

addresses o:f 

-then return 

their value cells are equal), 

11 success11 • If A 

di1Xerent variables theq the 

and B re.fer to 

va.rlablcs mus·t 

become bound to each othe.r. We must decide 

whether to substitute A £or B or B 101 A. The 

rule usec,l is! Substitute the variable whose 

value eel l ha.s the lowest address for the 

variable whose value cell has the highest 

address. This ordering is selected so �hat a 

trace entry is generated as seldom as

posslble(trace entries are descrlbed in 1�:z. 

l}acktt"£:Ckiru;. !Ul<l Trac{;� Entries.lo Per-form the 

indicated substitution and return °success"• 

The substltutlon o:f. (say) B for A

per£ormed by placing the constructed term Lor 

B in 

( 2) A ls

the value cell for A• This ls called 

a variable and B 
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Asslgn B · o  A and return "success". 

{ 3) B ls a variable and A ls not a varla·,;le. 

Assign A to B and return "success n . 

(41 A ls a constant and B is not a variable. II B 

is a constant equal in value to A then return 

11 success", otherwise return ":failure 11 • 

{5) A is a skeleton and B is not a vari�ble. I:f B 

is not a skeleton then return •• 1: a i lure" • I.f 

the skeleton name or number o:f arguments �or 

B .ls not the same as :for A then return 

11 .:f al l.ure 11• I:f 1:he name and number of

arguments match then call the uni:fication 

algorithm recursively :for each o:f 

corresponding argument terms. If any 0£ these 

unl:flcatlons :fail then .return 11 :failure"• I:f

they all succeed then return nsuccess 0 • 

In order to implement the recursion required when 

matching skeletons, a uniLication stack is usect. 

entry in the stack contains :five words, namely: 

the term word for A. 

Each 

the environment pointer �or A. 

the term word �or B. 
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the environment pointer £or B. 

the index o� the current skeleton 

argument. 

Corr r:spondinf!, to ea.ch activation o:f an axiom there 

is an environment. The environment contains an 

lnstantlation list dS described earlier. The 

env.lronmcnt ulso contains other lnformation required· 

£or backtracking. 

The na.tu.re of the backtracking algorithm ensures 

that the l.l.£etimes o:f. axiom environments ure nested. 

More explicitly, i.f environment A is created bt�:fore 

envir<>nment B then envi.ronment I3 will be� annihilated 

before A. Consequently environments may be allocated 

and freed according 

environment stack. 

Three rcfr.isters 

environment stuck. 

respective uses are: 

to a stack discipline 

arc reserved ror pointing 

The register names and 

in 

to the 

their 

RFREE points to the beginning o.f the free 
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areu on the environment stacko 

RENV points to the current env�ronment. 

HFAIL points to the £allure environment(the 

£ai lur"-� environment :s explained in :l..!.2

When nn axiom ls about to be invoked, �ENV points 

that is, the environment 

£or the axiom which contains the 0 call" to the current 

axiom. To create the axiom envlroriment the �ree pointer 

( HFREE) ls incremented by the size o.f 

environment and the envlronment pointer (RENY} 

the new 

ls set 

to the newly crea�ed environment. The £ollowing 

diagram illustrates the use of these registers. 

J I 
I Free I 
J Area I 
J-------------]<---HFREE 
I Current I 
I Environment I 
J-----��----1<---RENV 
I Parent I 
J Environment I 
l-----------1 

I Other I 
I Environments! 
l ----·-------1 
J Failure I 
J F.nv i ronmen t I 
J-----�------1<---RFAIL 

J Other I 
I Environmentsl 
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The 

An environment contains the following 1lelds! 

£allure code and failure pointer. 

1allure environment pointer. 

success code and success pointer. 

success environment pointer. 

term word £or argument literal. 

the lnstantiatlon list. 

data related to failure is described l n J..!'-:Z. 

The success 

environment pointer ls a polnter to the parent 

environment which ls the environment to which control 

wil"l be returned when this subgoal succeeds. The 

argument li-tera"l ls the term from the parent axiom with 

which the head of this axiom will be unl1led. The term 

word 1or the argument literal is a word describing the 

argumen·t literal in the :format ( term .ID, poin1;er ),. 

Since the urgument term mus�· be an atom or a skeleton 

the standard �orrnat Lor the term ID ls relaxed. An atom 

ls represented by the standard code. A skeleton may he 

represented using any other eight bit code .. 

The success code and success polnter occupy one 

word. On entry to an axiom this code/pointer ls 

contained in reglster 1!HET. The code can ha.ve two 
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inte.rpre tat ions: 

(1) The code ls zero. This occurs l:f 

axiom is interpreted . In this 

polnter ,.pol nts to the term word 

the parent 

case the 

:for the 

remalning conjunction 0£ the rlght hand side 

o:f the axiom. A success return will go back 

to the appropriate place in the interpreter 

·to process "this conjunctlou.

{2) The code i s  nonzero. This occurs lf the parent 

axiom is compiled. In this case the pointer 

gives the address in the parent compiled· 

routine to which return i.s to be made. This 

code poin1:er pair may be set in the 

re_g:lster with a single BAL or BALR 

instruction. 

On entry to an axiom, an. environment is allocated� 

The size of the environment depends on the size o1 the 
! r· .... ·. 

instantiation 11st. 

lnstantlatlon list is 

The number o:f entries in the 

equal to -the number of distinct 

varlubles in the original axiom. On entry to an axiom 

all entries ln the instantldtion list are marked as 

"unassigned" by setting the term word in the entry to 
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o. 

The main interpreter routine interprets axioms. It 

ls called .from a parent axiom and passed an argument 

ll teral as· a parameter11 The .1:.i rst a.xi om whose head •,;as 

the same predicate name a.nd number o� arguments is 

activated. An environment is created and inltlalized 

and the unl1'icatlon o.f the argument literal and the 

axiom head is attempted. I:f the uni£lcation succeeds 

then the literals o.f the axiom body are each 0called11 

ln turn. If the original unification .falls or any or. 

the 11called 11 literals £ail, -then the backtrack i ng 

routine is Invoked. 

A slgnif:icant :feature ·of the main 

rout.inc is the means oj: accessing axioms. 

interpreter 

The string 

descriptor address is obtained .from the argument 

literal. This string descriptor ls the head of a queue 

0£ predicate entries. There are two types of predicate 

entry. One ls 

information about 

the system entry which 

operator declarations 
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identifierse The other type 0£ predicate entry contnlns 

information abou� axioms :fur the given pt.'edlcate name 

and a specl.i'ic number o:f arguments. The in:formation 

contained ls a pointer to a list o:f axioms or to a

routine :for a 11 complled 11 axiom. The majority of the 

built-in predicates are imp1emcn�ed in assembler code 

and they are accessed �hrough this routine-type entry. 

For a routine entry -the predicate entry po.inter 

gives the address of the routin e. The routine consists 

of the routine entry data :followed by the actual code. 

The principal element o::f the entry data is 

environment sl�e. To call a predicate routine, control 

ls passed to a common entry sequence which alloca�es an 

environment and saves the important values in the 

envlronrnent. Control ls then passed to the routine 

code. 

For a predicate entry o:f the axiom type the 

pointer gives 

axiom en-tries. 

The entry also 

�he address o� the :first of a queue of 

one axlom. Each axlom entry describes 

contains a word indicating the size oI 

the instantiation list so that the lnterpre-ter routine 

can allocat£:.� an environment o.1'. the correct size. 

The relationship o:f string · descriptors and 
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p.redlc,t. te entries is Illustrated by the 

dlagrani. Tbe uxiom entries are shown for 

A(lt2), A <- ll and A <- c.

l Strinu Descriptor} 
I £or A J 

V 

I Predicate Entry 1---)1 Axiom entry 
±or A with 2 arguments! J £or A( 1 1 2) 

V 

I Predicate Entry 1--->1 Axiom entry 
for A with no argument) I for A <- B 

V 

I Ax.iom entry 

I :£or A <- C 

i.ullowlng 

the ax·oms 

The backtrucklng routine is called £rom the 

unlflcution routine and from compiled axiom routines 
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when a £allure occurs. -�he basic functions per:formed in 

backtracklnµ are: 

(a) Determine the environment to which the proo:f 

must "backup" and reset -the - current 

environment pointer to this environment. This 

environment is -cal led the 

Reset the :Cree pointer to free 

al. l environments subsequent to the .:failure 

e nv lronmen t c Adjust the pointer to

change the si �e of the 1:ailur-e env l ronmi.:�nt 

( the next axlom may need an 

llst o1 d1:fferent size). 

instantiation 

( b) Remove the e:f:fect o:f all substitutions made 

since the ±allure environment was activated. 

( c) Re load the p1'cvious .failure environment 

pointer :from the f:ailure environment. 

(d) Load the :failure pointer :from the :failure 

environment and return either to the 

interpreter or the compiled axiom routine. 

The addrf!SS o:f the current failure unvlronmen-t 

(l.e the address 0£ the environment to whlch the proo± 

must 11 backup"), ls always contalncd 
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register, RFAlL. On entry to an axiom this pointer is 

saved in thB new environment so that .it muy be ....... est,:red 

on backtracklng(step (c) above). The processing o:f an 

axiom ma� or may not reset the :fc.ilure environment. I:f 

the last axiom :for a given p�edicate name and number 0£ 

arguments ls belng processed, the failure environment 

pointer is not changed 1 _ since no new alterna�ives have 

been introduced. On the other hand 1£ the axiom is not 

the Last then the £allure environment pointer ls reset 

to point to the current environment and the ..£allure 

code/pointer in the current environment is set 

appropriately. 

In order to remove the ef:fects o:f the appropr�ate 

substitutions during backtracking, a record is kept o± 

substitutions. Thls record takes the .form o:f trace 

entries, each o::f which contains the address o.f the 

value cell which was set by a substitution. To 0 undo 11 

the substitu�ion corresponding to a �race entry it is 

necessary only to set the value cell indicated by the 

entry to 11 unassigned 11 • When backtracking 1s performed, 

the list o:f truce entries is processed and all 

substitutions made since the activation of the £allure 

environmen� are erased. There ls no reason to reset the 
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vulue cells in the faitore environment u.nd subsequent 

environments since these environments are freed in the 

bucktrucking process. Consequently, trace entries are 

not gen·.;ra ted :for . ass lgnrnent s into the failure 

environment and subsequent environments. Fur this 

reason, when unifying two variables, the substitution 

is always performed so that the mryst recently crE!ated 

value cell ls modi. :fled. This cause�:.. a ·traco entry to he 

KCnerated only when necessary. 

Each trace entry occupies one word. Trace entries 

are organized in bloc.ks which are pl.aced in the 

environment stack. The first entry in a trace block 

( 1.e -t.he entry with the lowest address} is a special 

entry called This entry points to the 

top oI the prev.lous trace block, in order that the 

backtrack roui:lne can process each trace entry in turn. 

The f'ollowinµ; diagram lllustru.tes the structure! 
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Trace Block B 

• • • • -e •• • • • • • 

Environment D 

...... . ·-·· ..... 

Trace Block A 

..... ....... 

Environment A 

Jtrace I 
1 entryl 
1------1 
l link J 
I entryl----
1-----1 I 
J I I 
J I I 
l I I 
1------i I 
ltrace l<---J 
I entryl 
J------1 
l trac<.� I 
1 er-try} 
J-----1

l t ink I 
I entryl----
1-----l I 
I ! I
1 l I 
I I V 

• • •

Trace block A contains entries 

Low{_�r 
Addresses 

V 

-for substitutions 

made after the activation o� environment A and be:fore 

the ac-tlvation o:f environment· B. Xnterlacing -trace 

blocks and environments not only uses one stack Instead 

o:f two, but it also provides an implicit record ol'. when 

each trace entry was 

activation o.£ axioms. 

processes on l)' the trace 

greater than the address 

since t h<.�s e entries were 

created, relative to the 

The backtracking routine 

entries whose addresses are 

of the failure environmen�, 

created after the "failure 

envlronment. The address of the top o:f the most recent 
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trace block ls rnalntalncd in register RTRACE. 

Each iden t l :f lEH"' used .in the active workspace 

(either as an a tom c.�r as a skeleton identl£ier) is 

entered ln the symbol ·table when the identifier is

:f h•st encountered. The symbol table 

identifier is 

the value of 

called a Etring descriptor 

the identifier, as well as 

the value. A-J:.ter a string dcsc�iptor has 

:for a given ldent111er, al�l subsequen--t 

en-try :for an 

and contains 

the length o:f-

been creu.ted 

re.f erences ·-to 

the identifier are made via a pointer to the string 

descriptor. Consequently the values o:f two identifiers 

are equal 1� and only i:f the string descriptor pointers 

are equal. 

When an ldent1£ler is encountered in the input (or 

created dur lng e.)(ecuti on using the STR.ING predicate), a 

search ls made to see i:f a string descriptor exists £or 

the ldent if ier. If the search fails then a new 

descriptor is created. This search-and-add procedure 

is per£orrued by the HASH routine. 
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The symbol table search ls made usl ng h.:�sh chains. 

HA�HHEAD ls u vector of 1.1..nk entt"ies. The value of an 

ldentl:fler is hashed ( using the · HASH macro) to give an 

integer x. The link entry indicated by HASHHEAD(x) ls 

selected as -the head o:f a chain of string descriptors 

to be searched. 

Each 

data! 

string descriptor contains the 

the value o:f the ldenti:fier. 

the.length o:f the va�ue. 

the attributes o:f the ldenti£icr. 

- a link entry.

1:oll.owing 

An ldenti�ler can have any 0£ the :following attributes: 

PREFIX - the identi.:fier ls declared as a

pre-fix operator. 

SUFFIX - the ldenti:fler is declarf.'!d as a

su"i:.:flx opt�rator. 

LR - the identi:fler ls declared as a left-to-

right in1lx operator. 

RL - the identifier is declared as a right-

to-leLt infix operator. 

SPECIAL - the ldentl£ier consists o� one or 

two special characters and need not he 
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separated :from its operands hy a blank 

when used as a prefix, su11lx or Jn'flx 

operator. 

For ldentifi::ers consistjng of one special 

character, t be SPEC J.AL at t rll>u te ls sc�t when the st r lng 

desc r i pto1• ls constructed by the HASH t"outine. The 

SPECIAL attribute is also set .tor an iden t i.f ier 

conslstlng of two special characters when an operator 

declaration is made £or the identifier. The other £our 

attributes are rnulntained through the addition and 

dele�lon 0£ axioms 1or the OP predicate. 

A 1.i.nk £n..1£X. is a pair -0:f the form (cocte,pointer). 

The possible :forms o� this pair are: 

(LAST,-) 

( DIRECT , po int e r ) 

(INDIRECT,polnter) 

1£ the code is LAST then this ls the last entry in the 

chain. I:f the code is DIRECT then the pointer 

addresses the next string descriptor ent1.'y in the 

cha.in. If the code is INDIRECT �hen the pointer 

addresses a predicate table entry :f.or -this string 

descriptor. The predlcdte table entry contains a link 

entry wh.ich cont lnucs the hash chain. The link entry in 
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the predicate entry <.an have the .form (LAST,-) or 

(DIRECT,polnter). 

Each string descriptor can have any number o:f 

corresponding predicate entries, organized in a queue. 

Predicate entries may be o:f three types; namely a

system type, an axiom type or a routine type. The axiom 

and routine types e�ch con�ain a number o.f arguments 

:field and a pointer. The number o:f arguments :f le ld 

indicates that the entry applles 

the given laentlf:ier 

ar�uments. For an 

and 

axiom 

the 

type 

to the predicate with 

indicated number o.:f 

entry the pointer 

indicates the :flrst entry in an axiom queue. Por u.

routine type entry the pointer indicates the routine 

en-try sequence. Predicate entries of the system type 

are distinguished by a numbe� o1 argumenis field which 

ls negative. System type entries are used to record

operator declarations 

wlth the ldenti£ler. 

and file ln:formatlon associated 

The lnitla�izatlon routine acquires one large area 
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£rom which all storage requiremeni;s are su.tlsfied. The 

two principal requlremen�s· :for storage are for the

The environment 

stack starts at the bottom OI the acquired region and 

gro�s upward, while the global area starts at the top 

o:f the region and grows downward. 

allocated in -the global area are: 

( 1) string descriptors

(2) axiom entries

(3) axlom rou�lnes

The mal n elements 

The limit p�inter :for the environment stack ls 

maintained in ESTKEND. ESTKEND is always set to he at 

least one environment size below the actual limit since 

the routine entry sequence saves several. pointers in 

the new environment be£ore checking £or space. Normally 

ESTKEND is maintained we1.l below the bottom o:f. the 

ulobal area to .reserve space :for ·the error handling 

axioms, which will be called l:f the environment stack 

reaches ESTKEND. The iollowing diagram shows the 

various areas. 
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Global 
Area 

Reserved Area 1or l 

Error Recovery I 
---------------------<-·--ES'.· KEND 

l 1 
J Free Area J 

I I 
---------------------<--- RI:: REE 

J Environment 

I Stack 
1 

I 

The top of the environment· stack ls also used 

temporarily for write entrles(in TMPUT) und :for parse 

stack entries{ in TMGET) • During uni:fication a

unifica�lon stack is created which starts at ESTKEND 

aud gr·o\\'S downward,. Since siring dcsc ripto.r•s can be 

allocated in the global area during parsing, RFJ<EE ls 

temporarily set to ESTKEND when reading terms In order 

to prevent string descriptors £rom overlaying the area 

containing variable names and the Input term skeletons. 

As described earlier, axioms are stored 

are queued £rom predicate entries. Each 
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axiom entry contain . the following data: 

a link to the nex"t entry or a 11 last" fl·,g, 

the term word and skeleton descriptors 

representing the axlom, 

- a count of the n�mber o� va�ue cells needed

£or the axiom environment� 

- a Hfree link 11 •

The ":f.ree link" ls used to maintain a special queue of 

deleted axioms. When an axiom is deleted the s1•ace may 

no� be immediately £reed since constructed terms ln the 

proof may re:ference the axiom or suhterms of it. In 

order to :recover space from deleted axioms it ls

necessary to de1er the freeing o:f the axiom space. An

axiom entry is queued on a special deferred free queue 

when it is deleted. When a proo£ is completed and the 

supervisor is about 

ent1"ies on this queue 

1treal" -1'ree queue. 

to read another goal. or axiom, 

are then tt"'ans:ferred into the
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All axioms and terms in the system are read using 

the same mechanism, a stack driven parser. The parser 

uses two separate stacks, a token stack an<l a term 

stacho The interna1 representation for the term being 

parsed ls constructed on the term stack. The term stack 

can consequently contain zero or mo.re skeleton 

desc r.i pt ors .. The parse stack contai11s tokens and is 

used to control the parsing process. 

The £irst step in a term is the

"tokenization o.:t: the input. The TKGET routlnc is called 

to return a token on 1:he top 0£ the parse si:acke 

token rt�turnt�d is one o:f the :followlng ·types! 

<id£�nt i:f lcr>-, 

<term> , 

<comma>, 

<left parenthesis>, 

<right parenthesis>, 

<end of term>. 

The 

The token 0£ type <term> ls returned for int<�gers and 

variables. 

The parse stack entry descrlhing the 1:oken 
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a two sy.nbol look ahead and also exarninin� operator 

dt?c la rat l on Se The TMGET routine calls the RESOLVE 

routine when other reductions may be required. RESOLVE 

ls called 1.f the top of the parse stack ls neither a 

term nor an identi£ier. 

The RESOLVE routine makes reductions corresponding 

to the following BNF- rules. 

< t e rm> : :: = ( < t P. rm> ) 

<skeleton> 

<skeleton>::= <Identifier> ( <argument list> ) 

<term> <ln�ix operator> <term> 

(pre£lx operator> <term> 

<term> <su1�ix operator> 

<argument lis�>::= <term> 

<argument list> , <term> 

The RESOLVE .rout inc determines the applicable 

reduction (i:f any) by examining the type and pr.lo.ri ty 

o:f the top three stdck entries. Wlu�n a re duet ion 

produces a skeleton, RESOLVE builds an appropriate 

skeleton descriptor on the term stack. The term word 

:for the descriptor is placed in the stack en t r·y 

produced by the reduction. 
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All terms and axioms are written using the same� 

mechanism. T�fPUT ls a stack-driven routine which writes 

out terms using the current operator declarations. 

Terms are written in a minimally parenthesized :form. 

Consider as an example the term • ( A, { +{ -{ h, ! ( C } .) , D ) ) 

with the following operator declarations! 

OP(•, RL-, 100 )., 

OP(-,RL,150). 

OP(+,RL,200). 

OP( !,SUFFIX,250). 

We begln by processing the ou-ter skel.e-ton. This will be 

written in the .format 0
_

.
_

11 where denotes a subterm 

whose :format has not yet been determined. The :first 

argument of the outer skeleton ls processed and the 

output format is 

subterm. This 

now "A• "• 

suhterm wlll 

We now process the 

be wrl ttcn in 

n+u 

in:fix 

notation. To decide whether to parenthesize the subte.rm 

we examine the and the rl.g.h.i 

In this case the le:f t priority 

context ls 100, the priority 01 the in:fix "•"• In 

�cncral of a subterm is 
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defined as £ol1ows: 

(1) I::f the subterrn appears immediately to 

right of an ln:fi.x operator then the 

priority context ls the priority o:f

lnf·lx operator. 

{2) I.f -the subterm appears immediately to 

right of a pre:fix operator th<�n the 

priority context is priority o.f 

pre:flx operator. 

(3) Otherwise the le1t priority context ls 0.

the 

left 

i hat 

-the

le:ft 

the 

Slmi lar·ly we define the rl.£;hl Q£i ori_!y £.Q.ntc2;..! of a 

subterm as follows! 

(1) lf the subterm appears lmmedlatel.y to the le�t

of an infix operator then the right priority

context is the priority o.f the In:fix

operator.

{ 2) .Lf the subt erm appears immcdla t e 1.y to the left

oi a suffix operator the the right priority

context is the priority of the sui':Cix

operator.

(3) Otherwise the right priority context is O.
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In this example, the right prio.rity context o.t the u+u

subterm is O. Since the p�iority o± the i n.i ix u+u is 

greater than both the right and le:ft priority contexts, 

this subterm need not be pc1.rentheslzed. Thus the 

output will have the :format 11 A._+_u and we next process 

the "-" subterm. 

Tb is suh-te rm has a le:ft priority context o.I 100

and a rluht priority context o:f 200. Since the infix 

n_n has a priority of 150, which is less tha.n 200, we 

must parenthesize this subterm. The output now has 

.form.at "A.(_-_)+_u and we next process the f'irst· 

argument o:f the 0-" which is an atom. This gives an 

output :format o:f "A.{B-_)+_u. We next process th� 

11I(C)" sub tc rm,. The "t 11 ls a suf:fix operator. To 

determine whether to parenthesize a term .in sufflx 

..forrna t, it ls necessary to examine only the le-rt 

priority 

context 

context. In this case the le:f t priority 

is 150 and "?" has priority 250, so 

parentheses are required. The output .format ls 

II A. ( B-_ l )+_II• When -the remaining subterms 

processed we hd.ve the ::final output: 11 A. ( 13-C ! )+n u • 

This exampl(� demonstrates the basis o:f 

"minimal parenthesis" algorithm developed .:for 
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implementation. Prefix subterms were not discussed but 

u.na.logo\. ,ly to suf:fix subterms: Athey are treated 

subterm ln prefix f ormat needs to be parenthesized if 

the right priority context is greater than th� priority 

of the pre:flx operator. 

This basic method is re£1ned in oPder to .handle 

l.e:ft-to-right and .r lg ht- t o-le .f t infix operators. 

Firstly all the operator priorities are multiplled by 

four so th.at any two distinct priorities di.f:fer by at

least :four. For ln:flx operators two priorities are 

created! a right priority and a l e:ft priority .•. 

Intuitively, the left pr iority is the priority visible 

:from the le.ft and the ripht prlorlty is the priority 

visible :from

priorities o:f 

the 

two

right. 

.ln:flx 

Thus, in comparing the 

opera. tors to declde on 

parenthesizing, the leit priority o� the right one is 

compared with the right priority of the le£t. For both 

rlght-to-le:ft and le:ft-to-rlght operators the left 

priority ls the same a s  the priority. For a· right-to-

le:ft operator the 

priority. For 

priority .is 

a 

one 

right priority is one less than the 

le:ft-to-right opera.tor the right 

more than the p.riority. This 

refinement for infix operators extends the basic method 
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to handle le£t-to-right and rla;ht-to-le£t npnrators 

cc..rrectly, when two adjacent in.fix operators have equal 

p.rlorlty. 

The term writing routine is ef�ectively a stack-

driven tree traversal program. The stack conslsts o:f 

zero or 

represen.ts 

more 

a 

�l..ig 

subterm o:f 

Ea.ch write entry 

the or.i gi na l term ( or 

equivalently a node in the tree representation o:f the 

term). Each entry contains the £bllowing £lelds: 

the substitution environment o± the subterm 

the current argument in the - a po.inter to 

argument l.ist o:f the subterm slc.e let on 

descriptor 

- a count o:f the number of: arguments which 

remain to be processed in this subterm 

the leLt priority context 

the right priority context 

- a .flag indicating whether or not the 

subterm is parenthcs.ized 

flags indicating if the subterrn is being 

written in in:fix, prefix, su:ffix or 

b�slc skeleton notation 
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This section describes many o:( the more 

slgni:flcant design 

system. An attempt 

decisions made in i mplemcnt ing th�" 

is made to outllne the motivations 

:for the various decisions and 

were considered. The :features 

decisions :fall into two groups. 

the alternatives that 

a:f feet ed by the desit.!;n 

Languag_g 1eatures are 

readily visible to the user o:f the system. 

:!fUl.1!!.!:Qfl. are not read.ily visible but have implications 

��garding e�Liciency and ease 0£ implementation. The 

major :features o-f both types are discussed in the 

1ollowing sections. 

It ls c'lear :from experience with PHOLOG that the 

ability to declare operators as infix or prefix ls very 

useful.. This :feature is retained 

unaltered :form. A single operator 
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pre:t:lx and an in£ix declaration. Thls dual declaration 

ls alloweJ because o:r .its obvious application £or 

operators such as n+u and "-"· The u(_n operator is 

also used in both pre£ix and inflx £orms to represent 

�oals and axioms respectivel�. 

In some situations su1£ix operators allow a more 

natural notationo Consequently suffix declar�tions arc 

also supported. In order to prevent ambigous 

representations and to simplify the pa.rsing of terms 

the restriction is imposed that a su.f.fix 

not simultaneously be declar�d as ln£ix or pre�ix. 

To provide a more i'lex ih le user inter.i:ace, 

operator declarations may be accessed, added or del0ted 

by manipulating the OP built-Jn predicate. 

A 1lexible Iorm o± input £or terms is provided. A 

term may span several input lines or se veral terms may 

be input on one line. Since ini'Lx operators a.re 

allowed it ls necessary to indicate ihe end of dn input 

term by using some sort of delimiter. The e nd-of-term 
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dellmlter ls chosen to be u,. u. The character "••' as the

last character 0£ an input line is treate� as an -nd-

of-term. Tb e character "•" :followed by a blank marks 

the end of. a term, wherever it occurs in a �ine. This 

imposes restrictions on the use o :f "• n as an ope rat o .r: 

it may not be the last character on a line and may not 

be :followed by a blank� Alternatively a specjal symbol 

could have been reserved as �he �nd-0£-term delimiter 

and disallowed as an operator. The obvi6us cho lee 1'or 

such a special character was 11;", follow.ing its use 1n 

other languages, but this would have disallowed the use 

o:f 11 • n 
.. as an operator. 

A variable is· represented by an asterisk :foll0wed 

by the variable name�• The use o:f anonymous variables 

varl ables with no name) ls introduced 

abbreviate the notatlon in certain cases. The varldble 

name may be any of a sequence o± letters and digits. 

When a term is written the variablc:?s in the term are 

given names according to their canonical numbers (I.e. 

*1,*2 etc. ). This gives the rnotlva·tion £or allowing 

variable names consistlnu solely 0£ digits. 

An atom or identifier is represented by a sequence 

o:f characters enclosed in apost.roph�s. ln certain cases 
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the e nc l o s i r:g upostrophes may he omitted. The use o:f 

apostrophes allows the use o:f punctuation characters 

and special characters in atoms and .identi:flers, 

Obviously, the apostrophes are made optional to yield a 

briefer and more readable syntax. 

Since a large number of printers and in te rac·t i ve 

terminals are unable to deal with lower cas ·, letters, 

lower case lette.rs are not allowed ln unquoted 

identifiers. For -this same reason the dt�:fault ls for 

alt input -from the terminal to be translated to upper 

case. To maintain f�exibility, a �acility is provided 

to avold the transla-tlon ( i..e. the CONTROL predicate 

with the key LOWER) • 

.5�4 The Jsegres�n:t.t1.tlon of Axioms and Goals 

In the original Marseille version o:f PROLOG, an

axiom ls represented as a sequence o.f signed 

literals(e.g. TP-Q-R). There are several disadvantages 

to this notation. Firstly the n+n a.nd "-" signs give a 

deceptive indication of generality, but add nothing to 

the power o� the language. The inference rules used by 
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the PROLOG proof procedure can be explained . using the 

si ·.;pler an<l more natural rules o:f implication rather 

than the mo re general rules of resolution. 

In this lmplementution an axiom is represented as 

an lmplicatlon(e.g. P(-QSR). This representation h:..:i.s 

the advantage that an axiom can now he interpreted in 

an obvious wa.y as a term where 11 <-" and u .8" are

declared as in.fix operators o:f the appr•opri.ate 

priorities. Representing an axiom as a term of a 

certain form yields several beneLlts: 

(a) Axioms and terms can now be read and written 

using a common mechanism.

{b) Axioms can be easily rna.n i pu lated without 

resorting to a special list format. 

(c) Representations for alternation and negation 

can n.ow be easily included. Lf the 

identifier t -, . is declared as a prefix 

operator o� appropriate priority then negated 

li�crals can be used. 

e.g. A<-BS,C.

,c(-ESF. 

(d) Infix, prefix and sufflx £orrns or predicutes 

can be used since axioms are just special 
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cases o:f terms. 

e.g. If LIKES ls declared as infix then

A LIKES B is a valid axiom. 

When an a . .xlom ls invoked in a prooz, the right 

hand side or body of the axiom becomes a subgoal in the 

proo£. Because 0£ the similarity of £unction between a 

goa� and an axiom body, a similar format is chosen for 

both. 

Examples of goals are: 

<-A. 

<-F(*X)&G. 

The ope.rator 11 <-" is declared as prefix so that a goal 

is also a 

advantage 

term. This 

that goals and 

without 

notation has the further 

axioms are now easily 

depending on context. distinguished 

Consequently 

input. 

they may be :freely interspersed in the 

This Implementation Includes some o:f the built-in 

predicates o:f the original PROLOG in a modi1ied ±orm. 
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Other 0£ the original predicates are omittud entirely 

a.nu some new built-in predicates are included. These 

changes were made in an attempt to achieve the 

:following goals! 

{a) a. mo re powerful and unl:form system :for

manipulating axioms and opera.tor 

declarations. An attempt was made to make the 

language more "sel.f-conscious", that is, to 

provide the ability to access and change all 

aspects of the PROLOG environment £rom PROLOG 

programs. 

(b) improved access to external £iles. Any number 

o:f :files may be accessed by name. The 

orlginal PROLOG system provided a s.iu�le 

£ixcd lnput £Ile. 

{c) more "meta" facilities. In particular 

ability to determine the type o� a term (I.e. 

variable, skeleton, atom or lnte�er). 

( d) mo re general f'aclllties 

PROLOG workspdces. 

provided a simple 

The 

SAVE 

i:or manipulating 

origlna·t Pi<OLOG 

.function only. The 

extensive workspace £acilities described are 

based on similar .funtions provided by the APL 
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l anguaP-e. 

( e) improved :facilltles .for testing and error 

recovery. The ERROR predicate ls provided to 

allow user controlled display oL ln�ormatlon 

at the point of an error. This :feature is 

slmltar to the ON ERROR £acllity of the PL/I 

language. 

5�6 Predicatesi Skeletons an.g Ih£�£ Arit� 

A likeleton is determined hy a skeleton identifier 

and d number 0£ arguments. The question arises! Should 

a :fixed number o:f arguments be associated with each 

identifier? More speci�ically: Is it appropriate to use 

the skeletons F(1,2) and F( 1,2,3) in the same proof.? 

Placing restrictions on the number of arguments would 

have the advantage 0£ detecting certain user errors 

(such as typing F(l.2,3.4) instead of' F{l.2,3,4)). 

llowever the restrictions �ould preclude the nu-tural use 

oi: 11+n and n_u as both unary a.nd binary operators. 

Also, 1-t ls di ff lcu l-t to determine the 11 correc t 11 number 

of arguments £or an identl�ler without introducing some 
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form of declaratlo.·.s. Primarily :for these r.:-Hl.Sons it 

was decld�<l not to assoclate a speci.f.ic number o.:f

arguments with a skeleton identlfler. A slmllar 

discussion applies to the use o:f a predicate identi�ier 

with various numbe rs o:f arL��men ts .. The simpliclty and 

use:fulness of "optional arguments" is demonstrated by 

many o:f the built-in predicates prov idcd, in this 

implementation .. The .reduced facility :for e.rror

detectlon ls alleviated by the provision o:f the NOAX 

option in the CONTROL bui�t-in predicate. 

The design o.:f in�ernal :features is j nfluenc(:�d by 

two considerations: e:f:ficiency and ease o:f. 

implementation. The e:f:flcient and elegant structure 

sharing_ method :for representing terms, used in 

Marseille implementation, is employed with no maj 01� 

changes. This representation also allows the use o:f a 

stdck for axiom environments. 

An urea, cdlled the global arua, is also required 

for permanent data items, such as axioms and string 
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descriptors. The g•. ubu l area and the env ironme11 t stack 

are al loca te,d at opposite ends o:f a common area and 

grow towards each other. 

Ce.rtuln substitutions must he recorded as they are 

ma.de so that they may be "u�done" by backtracklng. To 

this end it is necessary to save the address o-f each 

value cell in whlch a substitution was made,,,. Thus we 

need to accumulate u list o:f value cell addresses or 

tracE:� entries. When backtracking ls per:formed it Is 

nec(.:ssury to determine all trace entries whlc� have 

been created since the creation o:f a given axiom 

env lronmen-t. To provide a record o.f the time of

creation of trace entrles versus axiom environments and 

to simplify storage management, lt was decided to place 

the trace entries on 1:he environment sta.ck. 

An early decision was made to support a mixture o� 

compiled and interpreted axioms. It was decided that 

this :f aci li ty merged the best :features of. convenient 

program development and e:f:flclent execution. The 

provision o:f thLs mixed �eature influenced the :format 

chosen ±or axiom environments. 

For an axiom interpreter lt is necessd.ry to record 

in the environment, the next axiom alternative 
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availablc(ln case Ji 'f::1.i lure) and the remaining goal 

conjunction 0£ the current axiom (in case of success). 

Each 0£ these two i�ems can be recorded in a three byte 

add1•css .. For a compiled routine it is necessary to 

record the success return address and the failure 

return address. These too can each he recorded in a 

three byte address. To maintain reasonable space 

e££icicncy It was decided to use the same two words ln 

the env lro nr,1ent to record the two items :for the 

interpreter a nd the two items for compiled codeo The 

high order byte o-f each wor<l would contain a code 

indicating the type {compiled or Interpreted). A code 

is used in both words to provide increased £lexlbility: 

when the interpreter processes the last literal o� the 

axiom body, 1 t :flags the success pointer with the 

"compiled" code and sets the success pointer a

routine wh.ich immediately "succeeds" . 

Backtracking could have been handled .in any o-f

several ways. The current environment could always 

contain a polnter to the previous environment on the 

stack. Then backtracking could trace back through the 

environments on the stack until an environment with a 

remaining alternative was found. It is more ef:flcient 
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to have the current environment contaln a poi.n ter to 

the most recent environment with a ·rernai ni ng

alternative, so that the appropriate envlronmcnt can be 

located in a single step. To facilitate this, a 

register pointing to the current £allure environment is 

maintained. Thls register also allows u more e££1cient 

handling of. trace e.ntrles. It is necessary. to trace 

only those assignments into value 

current failure environment since 

erase the failure 

cells below 

back tracl-. ing 

the 

will 

An atom is represented by the address 0£ a symbol 

table entry. The alternative o� representing each atom 

by a separate strlng was rejected. This alternative 

would necessitate time-consuming comparison 0£ strings 

during uniilcation. Hashing seemed to be the only 

reasonable access method £or a symbol table. Since the 

number of atoms in use in dl£Lerent PROLOG workspaces 

varles a great deal, th(� method of hashing into a 

symbol table or "fixed size was rejected. The use o:f

hash chains was deemed the best choice. To fucllltate 

parsing of input and the implementation of the STRING 

built-in pre<lica·te, the muximum length for an 

ldentl1ler was set at 256 characters. 
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o:f the / 370 was a strong The meruory architecture 

in£luence in d�termining th� representa�ion £or terms. 

The storing o:f a twenty-:four bi� address ln a thirty-

two bit word allows ef1iclent representation of a term 

usli..g an eight bit code and a twenty-:four. bit address 

or number. The selection o:f the codes :for the :four 

types of terms W'•..lS also based on efficiency 

consldera-tions. The e:f:ficlency of �he dere£erencing o:f 

terms is very important and depends on -the rapid 

recognition o:f variablebo Consequently the type code to 

represent a was chosen so that the word· 

representing a variable would be negative and the word 

representing any other type 0£ term would be positive. 

Since skeletons vary in size, it seemed necessary 

to represent a skeleton term by a pointer to some sort 

o:f skeleton descriptor. This descriptor would need to 

con�aln �he following ln£ormatlon: 

-the skeleton name

-the number 0£ arguments

-the arguments

The arguments can each be represented by a sinHlc term 

word. The skeleton name can Le represented by a twenty-

four blt pointer to a symbol table entry. It ls 
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desirable to make the r�presentation for a skeleton an 

integral number of words in size. Consequently 

choices open are to restrict the maximum number o:f

arguments to 255 and record the value in elght bits or 

,. 

to reserve an extra word �or the number o� arguments. 

The limit o:f 255 arguments seemed reasonuble, so that 

alternative was chose:--1. 

In a PROLOG workspace, various, pieces o.f 

in:formation are associated with identl.1'.i.ers. 'i'he 

ln�ormatlon which can be stored for an identi.fier can 

inc�ude all or any of the �ol�owlng: 

opera�or declarations 

axioms 

routines ( :for built-in predicates and

compiled axioms) 

:file information 

in:formatlon .for the CONTROL hui l·t-in 

predicate 

It must be possible to access this in:forrnation from the 

string descriptor :for the identifier. Conseque1rtly i--t 

was decided to provide :for the chaining o:f predicate 

entries :from string descriptors. Instead of reserving 

space ln each string descriptor :foi-• a pointer to a
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predlco.te entry chain, the technique o.f. Indirect 

pointers described in 1.!..a .. �.:L.mbol To.h1e Or.,ga..niz.u.tion Wt1S 

used. 

It was anticipated that compiled code routines 

would need to access predicate entries ctit'ectly to 

obtaln the addresses o:f other routines. 

the predicate entrli.•s are organized in 

AccordingJ.y, 

t he .12r.,g£!l.£.s!.i£ 

The entries may be accessed uslng an offset 

from the table base. In normal execution a :fixed 

register ls reserved j:-_,r the predicate tabl-t� base. It 

is assumed that the maximum predicate table size will. 

be restricted to 4096 bytes, in keeping with the limit 

on base-displacement addressing on the /370. This limit 

ls not yet Imposed since the compiler has not been 

implemented. 

It was decided to provide the implementation with 

a :facility f'.or programmable error recovery. This 

required the reservation of space on the stack for the 

execution 01 user written error 

a stack over£low. Consequently 

is implemented to provide space 

overflow is detected. 
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mind, the following pr�dlcatcs are suggested. 

PROVABLE( *X} 

This predicate succeeds i:f some instance of *X is 

provable from the axioms. This predicate could be 

implemented by proving *X in the usuc1.l manner and 

then erasing th · proof oI *X and any substitutions 

made during the proo:f. This predlci.tte can be 

defined in the existing implementation using the 

meta variable fa.cl ll ty and the slash. The 

provision 0£ this and some 0£ the following built-

in predicates would standardize the predicate 

names used :for several common £unctions. This 

standardization would also allow a compiler to

recognize certain standard predicates with defined 

characteristics and to optimize accordingly. 

UNPROVABLE{ *X) 

This predicate succeeds if no instance of 

provable ::from the axioms. Note that no 

instantiation is performed. This predicate can be 

def'lned in the existing implementation using the 

meta variable .facl Li ty and the slash. PROV.ABLE 
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could he defined by! 

PROVABLE!*X) <- UNPROVAllLE{UNPROVABLE(*X)). 

UNlFY(�:X,*Y) 

This predicate succeeds l :f >:i:y �re 

uni :flab le. I :f the predicate succeeds then *X and

*Y are unl:fled •. This predicate could be de£ined in

the exlstlng system using the axiom UNIFY(*X,*X). 

UNIFIABLE( :,;{_X, *Y) 

This predicate succeeds if *X and 

unl�lable. No unification is performed. 

DUPLICATE( *X,*Y) 

*Y are 

This predicate succeeds i:f *Y can be unl£ied with 

a copy o:f *X• Hore speci±ica1ly, a copy 0£ �he 

term bound to *X ls created with the variables 

renamed. DUPLICATE is closely related to the above 

predic a tcs. 

PROVABLE(*X) can be defined by: 

PROVABLE(*X) <-DUPLICATE(*X,*Y)S*Y• 

UNIFIADLE(*X,*Y) can be deflned by! 

UNIFIABLE(*X,*Y) <- DUPLICATE(*X,*Z) 6 
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DUPLICATE(*Y,*Z). 

INSTANCE( *X) 

Tl.1 J. s predicate ls proposed as a means of' 

Instantiating all variables in the term *X• The 

ieatures appropriate for a predlca�e 0£ this sort 

are not .readily apparent. One suggest.lo,-'! is that 

in this :form ,the variables are uni1ied with the 

integers 1,2,a, etc., to provide a 11 most specific 

instance" of t.he term. A more general fo1·m might 

be INSTANCE(*X,*Y) where the term ,:,y is used as a 

model .:for the instantiatlon o:f -the variables in 

the term *Xe For instance• i:f *Y is bound tc V(*)

then �he variables in *X would be instantiated to 

V(l), V(2), etc. The instance predicate would he 

use:ful in a compiler £or compiling PROLOG axloms 

directly into 

general 0 meta n 

code. It could also be used as a 

Lacllity for �erms. For example, 

it could be used to replace the MKG
T

IOUND predicate 

in WARPLAN(9). 

CONDENSE 

This predicate could be implemented as a predicate 
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COUNT 

wlth a pragma�ic slMni:ficance, but no semantic 

sl�nJLicance. Specifically, it would recover F0acc 

on the environment stack by causing a p ot"' t ion o.£ 

the proo:f to be condensed. The desirability o.f 

such a 1:cature is clearly dependent on the 

lmplementat.ion. 

This pred.ica-tc is proposed as a means o.i: providing 

l.oop controle It is suggested that four �orrus 0£ 

this predicate be provided� 

COUNT - ·this predicate succeeds when :first 

invoked and when backtr'acked too 

"'."fhus it can be used to per£orm 

looping. The loop can only be 

terminated -through the use o� RETRY 

or /. 

COUNT(*X) - same as £or COUNT but when first 

invoked *X is instantiated to 1 and 

back t rac k.i ng causes to be

instantiated to 2 then 3 etc. 
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COUNT(*X,��) - same as �or COUNT(*X) but when 

:first invoked, 

to *N ( *N mus-t be 

instanti�ted 

bound to an 

integer). B�cktracking causes *X

to he ln�remented as be1ore. 

COUNT( *X, �'N, *M) - same as ±or CO�NT(*X,*N) 

hut backtracking will only succeed 

whlle *X ls less than or equal to 

*M•

integer. 

must he bound 1:o an 

SUBTERM(*SKEL•*INDEX,*RESULT) 

This predicate can be used to select the argu1nent 

oi a skeleton with an appropriate index. For 

example the ca1l <-SUBTEHM(F(l,8,27,64)1 3,*CUBE) 

will succeed and wll1 set *CUBE to 27. Similarly 

the call <-SUBTERM(F(l,8,27,64),*I,64) will set *I 

to 4 (the index of the 

unifiable with 64). 

CODEAX( *X) 

first argument which is 

This predicate succeeds if there ls an axiom ln 
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coded .form ( l. : ie �or.1pl led) w l th the same predicate 

name and number o� arguments as the term *X• 

ls intended. for user written theorem provers, to 

al; ow them j'ul l access to the PRO LOG axioms and 

coded a.xloms. 

CODEAXN{*X,*N} 

This predicate succeeds if there is an axiom in 

coded £orm (1.e compiled) with the predicate name 

given by at�m *X and with the number oL a1-guments 

given hy integer *N• This predicate is incl.uded 

�or uni�ormity with the AX and AXN predicates. 

Built-In predicates might 

:following a.reas 

also be us.e:ful 

adding and deleting compiled code axioms 

more power1ul library predicates 

ln 

inter£aclng to subroutines ln other Languages 

-the

providing special tracing and debugging features 

more genera� £ile capabilities 
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Resolution has been shown to combine 

simplicity and power of expression when used as a data 

base definition/query langua.:;e. In the practical sense 

1:hough, this and previous PROLOG implementations have 

not provided a realistic means for manipulatLng a data 

base 0£ signl�icant size. To extend �he implementation 

to include this �acility, several �eatures ne�d to be 

c onsidered. First it wl 11 be necessary to <lev·Jlop a

technique . .for storlni� axioms on an external storage 

medium. In this implementation, the actual maximum 

size .for the axioms and work areas o:f the active 

workspace is 16 megabytes, though the practical max�mum 

ls considerably �ower. I� some axioms are to be stored 

11 1nterna.lly" and others "externally H then a criterion 

must be established to determine the storage mode £or a 

given axlom. This c ould either be determined 

automatically by the system or speci�led by the user. 

For instance a MODE built-in predicate could be 

provided to allow the user to specify an "internal" o.r 

11externdl 11 mode ::for any pre di ca te name. Another

£eature whlch is desirable £rom an efficiency point of 
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view is prov: sion or 11 unordered 11 axl o.,1s • For 

example, consider a data base consi:.;ting entirel.· of' 

axioms of the form NAME(xxxx) where xxxx ls an atom. 

To determine if. an atom 11 is u. NAME" we do not want to 

sea1�ch through all the "NAMES"• Clearly {\ hashing 

technique ls desirable. This sort of' technique is 

easiest if we do not need to re1uembe 1" ·the original 

order of the NAME axioms. It might be desirable to have 

a MODE predicate which allows the user to dc:f.ine an

11 ordered 0 or "unord�rect 11 mode t:or any predicate .,a.me,,,

Numerous other questions need -to be resolved in 

order to provide an e.f:ticient and elegant data base 

system within PROLOG. 6.4 Real Arithmetic 

Arithmetic values ln this implementation are 

rest·rlcted to integers. In many cases real arithmetic 

would also be use:ful. 

several dee.is ions must 

reprc.�sentat ion .:for real 

To include real 

be made. The 

constants must he 

arithmetic, 

syntactic 

selected • 

The uni:ficatlon. technique :for reals must also be 

determined. The problem in this area ls the means ror 
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comparing reals, 

l n.:..<lequa te due to 

since st-rlct equu.llty 

roun<lo:f:f err-ors. The 

p.robably

built-in 

predicates would also have to be modiLled and extended 

in order to provide the basic arithmetic operations. A 

£acllity 1:'or formatting output may also be required. 

Support for real arithmetic does no-t appear to be 

easy to provide. It may be that the added complexity 

does not warrant the e1:'fort 

imp"lementatlon. 

£2.tli A Mo.re �llfil.f.i�ated PrQ.QI Pr.Q.cedure 

The power of PHOLOG could be

11 1mprovlng" the proof procedure:�. The 

required 

extended 

danger ls 

:for 

by 

that 

more elaborate proof procedures incur greater overhead 

and require more complex data structures. Sue h changes 

might eroli c -the very advantages or PIWLOG as an 

e£fic1ent (and restrictive) theorem prover. 

Numerous avenues remain to be explored in this 

area. Extensions to provide "bottom up" and 11 bread1:h 

:first" .facl llties need to he invcstif;atcd .i:urther. 
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This implementation cun be used to "mirnic n second 

order :features by using certa.iL built-in predicates. 

The provision of any true second order £acilitles needs 

to be investigated. 
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The preceding sections have described the main 

:fea turet· o:f thls .l mp le men tat i on of PROLOG. The 

implementatlon has been completed as described except 

for the built-in workspace predicates described ln ��§ 

P redl.ca tes ... This implementation was 

developed on an IBM 370/158 using VM/C.MS. Some sample 

pro#r�ms were used to compare the e£1lcicncy of �he new 

implementation and the orig.inal 

Marseill.e. The programs chosen 

system �or plan generation(9). The 

implementation rrom 

involve the WAi<PLAN 

Lirst set or times 

compares the time required to load the axioms :for the 

WARPLAN system. The next 

times required to 

two sets 

solve 

0£. times 

the 

1-�ive the 

problems 

<-PLANS(ON(A,B},START) and (-PLANS{ON(A,D),START) 

respectively• using the axioms �or the blocks world as 

described in (9). The comparison is based on seconds 

o:f virtual central processor �l�e on a 370/158. 
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Mars 'ille Interpreter New Inferpretur 

1---------------------1------------�-�----I 
I ss. 2 I - � 40 I Load WARPLA"N 

J---------------------1------------�-- ----! 
Problem 1 I 2.12 J .16 I 

J -----·----------------1------------------1 
Problem 2 I 3 .97 J • 24 I 

-------�---�-------------�--���--------

These tlme s give an approximate measure oi' relative 

per:formance. They show an i.mprovemen t £actor ,>i' over 15 

£or execution and over 100 :for the loading o� axioms. 

No comparison 0£ the space cf-f ic iency o:f 1: he two 

lmplementu.tlons has been a t tempt e:� ct • No s 1 gr· i £ 1 cant 

dl:fferences are ant�clpatcd in this area. 

Other more subjective evaluations remain to be 

made. These eva�uatlons will be made by the £inal users 

of the system. 

It ls hoped i:hat this implement at ion wi""ll 

stimu1-ate 1: be development of' the PROLOG language and 

vi1l provide a base 1or �uture enhancements. 

- 142 -



1. Al£red v. Aho and Je£frey n. Ullman: The Theory o:f 

Parsing, Trans 1.a·t ion and Compiling, Volume I, 

Prentice-Hall, 1972. 

2. G. Battani and H. Me loni: Rappo1·t de D.E.A. 

df In1:ormatlque Appliquee, Group,� d 1 Intelllgence 

Arti�lc.ielle, u. E. R. de Luminy-, Universite 

d•Aix-Marsellle, 1�73. 

3. H. Coe_lho

Geome-t ry 

and Le 

Theorem 

Pereira: 

Prover, Dept. 

GEOU: A PKOLOG 

o.-f Artificial 

Intelligence, Univ. 0£ Edinburgh, 1976. 

4. M. H� van Emden: Programming with Resolution Logic, 

Research Report CS75-JO,Dept� oL Computer Science, 

Univ. o� Waterloo, 1975. 

S. H .. ll. Enderton! A Mathematical Introduction to 

Logic, Academic Press, 1973. 

6. Nils J. Nilsson! Problem Solving Methods in 

Art1£lcial Intelligence, McGraw-Hill, 1971. 

7. Grant Mo Roberts: A Md.c ro Reference Manual, 

Computing Centre, University of Waterloo, 1975. 

8. P. Roussel: PROLOG Manuel d 1 Utilization, Groupe 

- 143 -



d' Intelligence Ar-tl:flcie.lle, 

Luml ny, 19'7 5 

Marseilles-

Warren: WARPLAN: A System �or Generating 

Plans, Dept. o.f Computational Logic Memo 76, 

Edinburgh, 1974.-

- 144 -



152240 




