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1l Introduction

Research in artificial intelligence has spurred
the development of numerous programming languages
better oriented 1o expressing and solving the problems
which arise in this fielde One of tﬂese languages is
PROLOG. The acronym PROLOG is derived from . ROgramming
in LOGic and emphasizes the derivation ox the language
from predicate lozics The development of PROLOG
represents the discovery of a means for using
rgsolution logic as a practical programming language
for problem solvinge

The semantics of PROLOG are essentially those of
first order resolution logic(8y4). Conseguently +the
languayze is both well defined and compact in
definitione More important thoughy, the language is a
powerful tgool for problem solving, as has ©been
demonstrated in the developmént of several problen
solving systemsy among them a geometry theorem
prover{3), natural language understanding systems( ) and
a program Tor automatic plan generation(9)e.

The original PRO®LOG language and an interpreter

for it were develored at the University of Marseille by



Coulmeraur and his coliecaguese The author has»developed
an implementation in an attempt to provide a more
usable version of PROLOGe The principal goal of this
implementation was to reduce the execution time of
PROLOG programse Another important ainm was to make the
PROLOG system more convenient to use by altering the
syntax and providing improved system functions,
particularly for error recoverye

This document is intended to serve A dual purposece.
It provides a user's manual for +the systeme It alsc
describes the design and implementation of the

languages The user? manual is contained in 2 The

l

anguage and 3 Buili-in Predicatess Sections 2.1 to

2¢e3 inclusive describe the basic features of the
languagees Section 2.4 is a detailed reference Tor the
language syntaxe A complete description of the built-

in predicates is provided in 3 Built—in Predicatess

The da ta structures and algorithms of the system

are described in 4 The Implementations The various
decisions and tradeoffs made in the design of the
language and in its implementation are discussed in 3

Design Decisjionses Possible future modifications are

discussed in 6 Future Considerations for PROLOG.




2 The Lapguage

221 Introduction

The semantics of PROLOG is essentially that of
resolution logice But resolution logic itself does not
constitute a programming languages Statements in
resolution logic are descr@ptive. They have the form 'x
is true, In conventional programming languages the
statements are imperative. They have the form Yperform
action x". To dérive a programming ianguage from
resolution logic we add imperative statements of the
form Yprove that x is truel. A statement of this form
is called a goal statement. A PROL®G program consists
of a set of goal statements and a set of axiomse The
axioms are descriptivey, constituting a list of factse
Each . goal statement is imperative and requests that
axioms be used in an attempt to prove a certain facte.

To the passive language of axioms we have added
the notion of goals to yield a language of actiony a
programming languages This language now allows us to
reguest the construction of a proofe. But how will the

atteapt at a proof proceed? The proof procedure for



PROLOG uses resolution in a simple depth first, left to
right search strategye This proof  procedure is naot
completes Because of the depth first strategy a proof
mnay not be found even it one eXxists in the search
spacee The proof p?ocedure may follow an infinite
branch in the search tree and nevef examine another
branch which could yield a satisfactory prooc'. However
if the proof procedure terminates we know that it has
found the right answere If it terminates with success
then a proof existse If it terminates with failure then
no proof exists in the search spacees

This simple search strategy may seem
unsatisfactory since it yields an incomplete prooft
procedurey but it has numerous advantages over more
general strategiess It can be implemented in a manner
which is more efficient in the use of space than
current breadth first search methodse The simplicity of
the PROLOG search strategy makes it easy for the
programmer to understand and control the searche The
strict ordering of the search permits the use of built-
in predicates causing side effects(esce READ and WRITE)
with the knowledpe that the side effects will accur in

a prescribed ordere The prospect of output being



created in random o»rder does not seem very pleasant!
Thus, it is evident that the simple search‘ stracegy
possesses several desirable chracteristics; It is also
possibl~a to beg the‘question of search strategy by
stating that if anyone wants a genergl theorem prover
then PROLOG is a good language in which to program itt
The possibility of'diiferent search strategies for

PROLOG is discussed 1in 6 Future Considerations fTor

PROLOG.
An explanation of resolutien logic in terms of
classicatl logic is given in (). Programming using

resolution logic is discussed in (4)e

2:2 Elementary Syntax

This section introduces the syntax of PROLOG
axioms and goalss A brief desciption of the basic
syntax is provided in preparation for the description

of PROLOG execution in 23 Excecution and BacKkirackinge

A detailea description of all the syntax rules is then

provided in 2e4 The Syntax in Detaile

The basic syntactic unit in PROLOG is the terme A



term may bes

{a) a constant - basically any sequence Af letcers
and digitse A constant may be én integer or
an atome eege ABC and X2

(b)) a varjiable - an ‘asterisk. followed by a
sequence of letters and digitse eege *X and
*Al.

(c) a skeleton — a skeleton name and a list of one
or more argument ferms. The argﬁnent terms
are separated by commas and +the 11ist is
enclosed in parenthesess eege F{X2,%Y) and
G(*ByAyF(3))e

The syntax can be described in BNF actations:
<term>::= <atom> |
<integer> |
<Variabl¢> |
<skeleton> |
( <term> )
<atowm>: := <identifier>
<skeleton?::= <identifier> ( <argument list ) |
term> <infix operator> <term> ]
<{prefix operator> <term> ]

<term> <suffix operator>



<intix operator-2:= <identifier>
<prefix operator>::= <jidentifier>
<suffix operator>::= <identifier>
argument 1lst>::; {term> |
argument list> , <term>
{variableX:zz= % I
<variable> <letter> |

<variable> <digit>

The rules involving operators describe an alternative

notation fer skeletons, to be described in 2.4 The

PROLOG axioms and zoals are cenposcd £f literolss

i

A literal may be a skeleton or a constante A predicate

is the name associated with a literale I€ the literal

is a skeleton then the predicate is the skeleton names

»

Otherwise it is the constant associated with the

literale.

(1]

The general form of a PRCLOG axiom is
<axiom head> <— <axiom body> e

The implication arrow, "<—" js read "is implied by'",

The axiom head is a single literale The axiom body is a

conjunction of literalse A congunction of literals may



be a single literal or two or more literall; senarated
by the Yand" symdol(&)e. An example of an axiom iss

A<~ B E&C .
The head is Ay the body is B & ¢ and the axiom is read
A is implied by B and C" or "To prove A first prove B,
then prove C"e An axiom may have a null bodys in which
case the implication. is omitted and the axiom has the
form:

<axiom head> e
An axiom with é null body is called a unit axiome AN
example is:

F(M).
Tizis 1s read "F(M) is true.

The general form of a PROLOG goal is:

<- <goal conjunction’.
The goal <conjunction is a single 1literal or a
conjunction ef literals. Examples of goals are 32

<=Po,

<-Q(R) B F &
Goal statements may be regarded as abbreviations tor
axioms of the form:

tooal!? <~ <goal conjunction”

where YgoalM is a distinguished literal which the



PROLCG theorem prov: s atteupts to "prove'.

Frem the user point of view the PROLOG sytem
accepts axioms and goals from the terminale AXxioms
which are entered are recorded for later use in proofse.
An attempt is made to prove a goal statement as soon as
it is entereds

In axiqms and terms all variables are assumed to
be universally gquantifiede That is, an axiom containing
variables is valid for any "values® which tﬁe variables
may take one A verbal version of the axion
MFATHER( *X,%Y) <— SON(*Y,*X)" jis "For all values of x
and yy x is the father of y 1if y is the son of x". The
substituting of Yvalues" for variables will he

discussed further in the next sectione

acktrackin

PROLOG execution is started by a goal statemente A
goal statement is a request for a proofe The execution
of a PROLOG program is essentially the actions of an
elementary theorcem prover attempting a4 proofe

A series of diagrams may he used to describe the



progress of a PROLUG proofe Each diagramy called an
implication tree s describes the state ot thev prooi at
a given point in timeo. An implication treevconsists of
one or i‘ore labelled nodess« At the top of the diagram
is a node labelled Ygoal". Each of the other nodes is
labelled with a literal and is  joined to a parent node
immmediately above ite A node is called the c¢hild of
its parent: A node maey be in any cne ©of three states:

{1) open: No attempt has been madé to prove the
literal labelling the nodes The node has no
childrene.

(2) closed: The literal 1labelling the node has
been proven using a unit axiom fTor the
literale The node is marked with an "x" +to
distinguish it from an open nodes A closed
node has no childrene.

(3) active: The 1literal labelling the node |is
being proven (or has been proven) using a
non—unit axioms The node is labelled with the
literal of the axiom heads. The children of
the node are labelled with the literals of
the axiom bodye The left—to-right order of

the literals in the axiom body is preserved



in the diagrame The original goal statement
is treated as an axiom of the form Y“goal <-
<goal conjunction®". Thus the children of the
goal node are labelled with the literals of

the goal conjunctiones

Consider the following axioms and goal:
4A<~BEC.
Be
C<-De
De

{-Ae
The proof of this goal is represented by the fellowing
implication trecez

goal

This is a gcompleted impljication tree since all nodes
are clther active or closedes The nodes labelled B and D

have been closed using axioms HRW and HDeW



respectivelye The node label}ed A is active and has
been proven using the axio:r "A<S-BE&C.'".
Consider the following example of axioms and a

goal statement:

A<-~BSC.

B<~-DEF.

BL-EEFe

C<~-G.

E<-G.

F<-l.

Ge

He

The initial state of the proof is represented as:3

goal

!
A

The first axiom for A is selected, namely A<-B&C

giving:



The prover always works in a depth—-first lLeft—to-right
fashione Couseqguently the uext literal to be proven is

Be The axiom BL-D&F 1is selected:

The prover then attempts to prove Ds But there are no
axioms for D so the prover must backtirackes This
involves ®acking up the proof and trying other

alternativese A choice point in the proof is a point

where an axiom was chosen to prove a literal and more

axioms remain to be triede. Backtracking involves

backing up the proof +to the most recent choice point
and making a different choicee The order in which the
axioms are chosen is not arbitrary. AxXxioms are always
selected 1in the order in which they appear in t he
inpute In this example B<-DEF will always be examined
before B<{—-FEFe.

The most recent choice point in the current proof
is the point where the axiom BL-DEF was selecteds The

proof is backed wup to this point and the other axiowm,

- 13 -



B<-ESF, jg selected. The proof continues as shown

below:
goal
=> |
A
/ \
B C
/ N\
E F
goal
=> |
A
/ \
B C
/ \
E F
|
G
goal
=> I
A
/ \
B C
/ \
E F
]
G
b4
goal
=> |
A
/ \
B C
/ \
E F
| I
G H
x



The final proct is represented by a completed
implication treee. Of coursey, if the proof fails then
the implication tree is never completeds I, in this
example, we omit the axiom C<-G then the proof attempt
will failes Alternatively, if we include another axiom
DP<~D then the prover will attempt to construct an

"infinite branch" of the implication tree:



¢ —g—U——

Eventually an error will occur when the proof stack
overflowse

In the previoué examples, none of the predicates
have argumentse For example,  the predicate term
FATHER({JOHBN,,FRED) has two argumenfs; JOHN and FRED,; and
can be used to. represent the statement "JOHN is the
FATHER o¢f FRED", PROLOG axioms <can also <contain
variabless For example the axiom
SON( %X %Y )S~FATHER( *Y,*X) represents the statement "x
is the son of ¥y if y is the father of x". Variables in
PROLOG are assumed to be universally quantifiede That
isjyan axiom containing a variable is considered +to be
itrue for any “values! the variable may take. ¥We will
make the idea of a variable Vtaking a value" more

precisee. In any axiom or goal we can perform a

substitutions A substitution replaces all occurrences

of a variatle by a terme The replacing term may be a
constant (such as ABC or 32)y a skeleton{such as F(A)

or G(*X,%Y)) or another variable. For example, if we



substitute A for *X in G(*X,F(%*X)) then the resulting
term is G(A,F(A))e If we substitute F(*Y) for %X in
H(*X,%Y) then the presult is H(F(*XYJ),%*Y), When one or
more substitutions. are applied 2o a term (or axiom),
the result is called an “ipstance of the term (or
axiom)e For exampley SON(FRED,JOHN)LK-FATHER(JOIN,FRED)
is an instance of SON( ?‘X,*Y)(—FATHER( *Yy%X) produced by
substituting FRED fer *X and JCHN for %Y.
To illustrate substitution bettery, consider the

following example:

SCN(*¥X %Y )<=TFATHER( *Y, %X ).

FATHER(JOHN, FRED).

FATHER( JOHN,GEORGE ).

FATHER{( AL, BERT)»

FATHER( GEORGE,AL).

We wish to solve the goal VW<—SON(*Z,JOHN)". By Ysolving
a goal' we mean finding an instance of the goal which
we can provee In this case we will prove
"SON(FRED,JCHN)I". The proof will be illustrated using

implication treese. The initial tree is:



goal

|
SON( *%Z 4 JOHN)
Now we need to find an instance of an axiom which we
can use in the proof of SON(*Z,JOHN)e. The appropriate
instance 1is formed from SON(*X,*Y)<-FATHER( %*Y,%*X) by
substituting *Z for *X and JOHN for *Y te give

SON( *Z, JOHN )X—FATHER{ JOHNy*Z)s The tree now is:

goal

I
SON( *Z, JOHN)

|
FATHER(JOHN,*2)

Note that we found substitutions that made the head of
an axiom the same as the current subterms. The general
process of finding substitutions to make two terms the

same is called unjificatione Next we want to find an

axiom whose head will unify with FATHER(JOHN,*Z)s The
first axiom <for FATHER matches if we substitute FRED

for ¥%Ze. This gives the cempleted implication tree:

goal

|
SON( FREDjy; JOHN)
!
FATHER(JOIINy FRED)
X



As a further example we will attempt to solve the
goal C~FATHER(JOCHN %X )ECF - . THER(*X,%Y )s The proof

proceeds as follows:

/ \.
FATHER( JOHN, *X) FATHER(®X,%Y)

goal
/ \
/ \
/ \
/ \
FATHER(JOHN,FKED) FATHER(FRED,*Y)
x
The attempt to solve the subgoal FATHER(FRED,*Y) fails
since this term will not unify with any of the axiom
headse Backtracking occurs and the proof is backed up
to the point where the FATHER( JOHN,FRED) axiom was
activatede. This axiom is then deactivated and any
substitutions made when (or since) this axiom was

selected are "undonel, This restores the proof 1o the

point:



FATHER( JOHN,*X) i FATHER( #X,%Y)

The axiom FATHER(JOHN,GEORGE) is about to be selected
for unification with FATHER(JOHN,*X)e This unification

succeeds givings

FATHER( J@®IN,GEORGE) FATHER(GEORGE, *Y)

x
The axioms TfTor FATHER are then selected in turn for
unification with FATHER(GLEORGE,*Y)e The unification
succeeds ior the axiom FATHLER(GEORGE.AL)y yielding the

completed implication treel

goal
/ \
/ \
/ \
/ \
/ \
FATHER(JOINGEORGE) FATHER(GEORGE,AL)
x X



To illustrate the operation of PROLOG f.:.rther, the
fcllowing examples demonstrate the manipulation of more
complex data structurese. A set of elements (similar <o
a LISP 1list) is represented by a term using a
constructor S and an end marker NILs For example, the
set with elements AyB and C is represented by

S{AyS(ByS(CHyNIL))) or as a diagram:

C NIL

The empty set is represented by NILe This notation is
completely arbitrary and is chosen for this example
onlye

A reasonable definition for the element!" relation

isz
ELEMENT(*X, S(%Xy4%Y) ).
ELEMENT(*X ,S( %Y 4% Z) )JS—ELEMENT(*X,%*Z)e
Verbally these axioms might be stated as "x is an

element of a set if it is the first element in the set
or if it is an element of the set of elements following

the first elementes The goal



<—ELEMENT{(C,S{AyS(B,S{Cy8(DgNIL)))))

yields the following completed implication tree:

goal

|
ELEMENT(C3sS(AS{B¢S(CyS{DyNIL)))))

} .
ELEMENT(CsS(B,S(C4S(DyNIL))))

| .
ELEMENT(C,5(C,S(D,NIL)))

x

This syntax for representing sets 1is clearly
cumbersomes To simplify this, infix notation may be

used(infixy prefix and suffix notation are explained

more fully in 2.4 The Syptax in Detail )e If we use a

et as the constructor and use infix notation then wé
can denoté the set with elements Ay,B and C Dby
AeBeCeNILe The axioms for ELEMENT become?:
" ELEMENT(*X,%Xs%Y)o
ELEMENT( %X %Y s %*Z )<—ELEMENT(%*X,%*Z).
Suppose we want an axiom to write all the elemen&s
of a scte The following axioms will suffices:
LIST( *Xe*Y)<-WRITE( *X)ELIST( *Y ).
LIST(N1IL).
WRITE is a built—-in predicate which always

succeeds and has the side effect of displaying its



argument term on the terminale, The term is written

followed by a period (the end of term delimiter)e.
goal statement <~LIST(AsBeCeNIL) succeedsSe

completed implication tree is:3

goal

LIST(AeBeCoNIL)

/ \
/ \
VYRITE(A) LIST(B-CeNIL)
x / \
/ \
WRITE(B) LIST(C.NIL)
x / \
/ \
WRITE(C) LIST(NIL)
x x

The output on the terminal 1Is:

Be

Ce

The following axiom could alsc Be used to list
elements of a set on the terminal:
LIST(*Xe*Y )<=WRITE(*X)SFAIL.
LIST(%Xe*Y )K=LIST(*Y)e

LIST(NIL).

The

The

the



The zoal <—LIST(A«B.C«NIL) will 1list all elements of
the Iindicatoed set and tl2n succeaeds. The ceompleted

implication tree iss:

goal

!
L1ST(AeBeCeNIL)

|
LIST( BoCeNIL)
I
LIST(CeNIL)

LIST)NIL)
x
Suppose we wish to define axioms for a predicate
NOTEL{ *X,*Y ) which succeeds if X 1is not an element of
*Ys Reasonable axioms for this predicate might bes:
NOTEL( *X4NIL)e
NOTEL( *Xy%Y+%*Z) <— NOTEQ( %X, *Y )JGNOTEL( *X3%*Z)e
Verbally these axioms might be stated:?
Hx is not an element of the empty setl,
"x is not an element of the set consisting of
Yy and some other elements if x is
not equal to ¥y and X is not an
element ol the set of otner
elements'e

The axioms for NOTEQ remain to be defineds The axioms



are:

NOTEQ( %X ,%X)<— / & FAIL.

NOTEQ( *X ¢ %Y ).
These axioms make use of a special control feature, the
slash( /) To illustrate this feature we trace the
attempt to prove the goal <-NOTEQ(A,A)e Initially, we

havez

coal

NOTEQ(A,A)

The first axiom is selected giving:

goal

I
NOTEQ(A,A)

| \

/ FAIL
The slash predicate always succeedse 1t is used te
prevent certain alternatives from being considered in
the prouofe In this case it prevents the second axiom

for NOTEQ from being considereds The implication tree

looks like:



goal

i

NOTEQ{AsA)

i \

/ FALL

x
The FAIL opredicate has no axioms and consequently it
failse Since the remaining  axiom for NOTEQ is not
consideredy; there are no remaining choice points and
the entire proof failse

Conversely the goal <—~NOTEQ(A,B) succeedss The
head of the axiom NOTEQ(*X,%X) <- / & FAIL cannot me
unified with NOTEQ(AyB) so the next axiom is selecteds.
The unification succeeds and the proof is completee.

The action of the slask predicate is described
more precisely: ¥Yhen the slash predicate is executed
it removes all choice points in the proof, from the
point when the axiom centaining the slash was selected
to the current point in the proofe.

The slash predicate is utilized for +two main
purposesa The first is to affect the meaning of an
axiomy often to handle negation ‘as in NOTEQ abovee The
second use is to improve the efficiency of a program by
preventing spurious choices from being considereds. For

examnpley consider the following axiom used to test if



two sets have one o more common elements:

INTEESECT{ %Ay *B)IS~ELEMENT(*X¢4%A) & ELEMENT( %X, +%B )

1f a ca'l to the INTERSECT predicate succeeds and then
backtracking returns to that point, then the ELEMENT
axioms will <cause other choices for *X to be trieds
Normally the attempt to find a different common element
is completely unnecessary since it has already been
proven that %A and *¥B intersectes This extré search can
be eliminated by wusing the following A axiom for
INTERSECTz?

INTERSECT( %A, *B)KX—ELEMENT(*X,%A) 5 ELEMENT(*X,%B)

€ /a

2.4 The Syntax in Detail

A PROLOG program consists of a sequence of symbols
belonging to a symbol vocabularye In this
implementation the EBCDIC character set is usede Any
one bfte value is a valid symboly even thoush it may
not have an explicii EBCDIC graphic codes These symbols

are divided into four groups as follows:



(a) Letters — The upper case letters from A to Z,

(b) Digits — The digits from O to 9.

(c) Pupctuatjon Symbols - This group consists of
the left and right w®arentheses, the
coméa, the apostrophey the quote and the
end—of—term symbol( the period)e

(d) Special Symlols = This group consists of all

symbols not in any of the three

preceding categoriese

The Ffundamental syntactic construct in PROLOG is;
the 1ermes As stated earlier, a term may be a variable,
a constant or a skeletones

A variable 1is represented by an asterisk(¥*),
followed by the variable namees The variable name is a
sequence of letters and digitse Thus *X, *A1B2C3,; and
%37 are all variabless In addition a single asterisk is
a variable of a special sort.'It is called an anonymous
variable and has the special significance that each
occurrence is considered to represent a distinct
variablee

A constant is a sequence of Symbols enclosed in

apostrophess. The sequence represents. the value of the



constant, Note that if the wvalue c:atains an
ap-'strophe, then the apostrophe . must be  duplicatede.
Examples of constants are:
YABC!
137+A)?
1)rr s
(R
The value of the third constant shown above consists of
the three symbols right parenthesis, apostrophe and
commay in that ordere The value of the last constant
consists of no symbolse The apostrophes enclosing a
constant are not always regquirede Théy may be omitted
if any of the following conditions are satisfied:z
1/ The value of the constant consists entirely of
symbols which are letters or digitse
2/ The ~value of the constant consists of one
symbol which is not a punctuation symbols
3/ The ~value of the constant consists of the
single period symbol and the constant is not
followed by a blanke
4/ The value of the constant consists of two
symbols which belong to the list of declared

special character pairse This list is dynamic



in nature and is discussed in 3.6 uatabase
Predicates in conjunction with the OP bullt-
in predicatee The initial 1list of special
pairs consists of a single entry for "<-",
Integers are constanfs whose values satisty certain
criteria. A constant jis an integer if and only if it

satisfies any of the followings:

1/ Its value consists of one or more digitse.

2/ its value consists of the symbol #+% followed

by one or more digitse.

3/ 1Its value consists c¢f the symbol ¥"-" followed

by one or more digitse

Iintegers may be used as arguments to several built-in
predicates which perform the fundamental operations of
integer arithmetice Two integer constants are
equal(ises indistinguishable) if their values are the
same after any "+Y symbols and leading zeroes have been
droppede Thus 001, ' +(3001? and 1 are all equal

integerss Note that signed integers must be enclosed in



apostrophess,
A constant which is not an integer is an atoms AB,
'AB('y '+' and ?'' are all atomse A sequence of symbols
which satisfy the“criteria for an atom is called an
ideptitiers.

A skeleton consists of an identifier and one or
more argument termse. Both predicates and functions are

represented as skeletonss A skeleton has the following

format=z

{identifier> ( <argument list> )

The argument iist consists of one or more terns

separated by commase Examples of skeletons are:
FACT(1)
G(14%X,F(1))

YA/ e )P (X, %xY)

Note that any of the argument terms of a skeleton may

in turn be skeletonse

To permit a more convenient representation for



skeletons; identifiers can be declared as in”ixy prefix
or suffixe For examnle, if the identifier LIKES |is
declared as infix then the skeleton represented as
LIKES(A;B) <can also be represented as A L1KES Be.
Similarly, if the identifier 1 is declared as suffix
then !(A) can be represented as Ale.

An identifier used as the skeleton identifier in

infixy, prefix or suffix form is <called an goperatore

The use of operator notatien is provided in additien to
the basic notation +fTor skeletons which was first
describede The .two forwms may be mixed freelye For
example,y, if LIKES is declared as infix then F(A LIXES
B;LIKES(CyD)) is a perfectly acceptable forme. A term
is represented in canonical form when it is represented
without using infix, prefix, or suffix notatione

In any term, subterms may be parenthesized to
indicate the term structurce. For example:

At¥(B-C) is equivalent to +(A,=-(8B,C))
but (A+B)-C is eguivalent to —(+(A,B);C)-»
Any term or subterm may bé parenthesizede 1f L1XES is
infix then ((A)) LIKES (C LIKES(D)) is a valid term
equivalent to LIKES(AsLIKES(Cs4D))e

An identifier can be declared as both prefix and



infix simultancous'y but an identifier which

poe
]

declared as suffix can ncot be declared as infix or
prefixe An identifier is declared by adding an
operato- declaration axiome The format for the axiom

to be added is:
oP( Kidentifier>,{type>,<priority> ).

{identifler> is the identifier to be déclared.

{type> specifies the declaration type and may be
any of: PREFIX, SUFF1X, LRy RL.

<priority> is a positive integer less than or
egual to 1000,

The declaration types of SUFFIX and PREFIX have an
obvious infterpretations The types RL and LR are used
to declare operators as infix right—to—left and left-
to-right respectivelys For exampley 1f "o jis declared
as RL then

A«B:.NIL is equivalent to A«(B.NIL)

and to t(Ay»(BleL))

If %+ jg declared as LR then

A¥B+C is equivalent to (A+B)+C



and to +(+(A,B)1C)

The priority specified in the declarations gives
the ponition of the declarations in a priority
hierarchye. The larger 1 he numeric priority the
stronger the "binding" ef +the operatore The following
examples illustrate the function of the prioritye. For
these examples assume that the following declarations

are in effect:

OP(-~yPREFIX,40)e
CP(!4,SUFFI1X,70)
OP( < ;RL,50)e.
OP(+3LR460).

OP(—yLR:60)»

Then:
—A! is equivalent to =~{Al)
A¥*B~Cs D¥+ELF is equivalent to ((A+B)=Cle((D+E)eF)

~A+B! is equivalent to —=(A+(B!))

The problem of resolving the case where two

identifiers have egqual priorities Dbut different



declaration types has not yet bheen discusseds For

instance 3f the declarations in effect are:

OP(+,LR,60)s
OP("" RL,bO )e
then how is A+B-C to be interpreted ?

.

The rule for reselving such conflicts is:z

If the rightmost operator is declared RL and the
leftnost operator is PREFIX(or RL) th-n treat
the rightmost binding as the strongeste.

Otherwise treat the leftmost binding as strongeste

The example A+B—-C is equivalent to { A+B)—Ce This detail
is confusing, and it is recommended that the user not
declare operators with the same priorities and
.different types and hence avoid the condition
completelye. The above description is included solely
for the sake of completenesse.

The initial state of the PROLOG system includes

several operator declarations, namely:

OP(<—=yRL,10)



or:<—,PREFIX,10).
OP( ] yRL,20).
OP(E4RL,30).
OP(~,PREF1X,40).

OP( « yRL,100).

Operator declarations can be added and dele ted by
adding and deleting axioms for +the OP predicate as

described in 3.6 Database Predicatess

An input term mustit be delimited by an end—of—term

charactere. The period is usede To distinguish between

the use o0of the period as an operator and its use as the
end of term charactery, the following rules are useds A
period that is not enclosed in apostrophes, double
quotes or comment delimiters is treated ;s an end of
term delinmiter if:

{(a) it is followed immediately by one or more

blanks or
(b) it is the last character of an input line. (By

line we mean either an input line from

the terminal or an input record from a



file)de.

Blanks wmay be freely used in the input term,

subject to the following conditions: ‘

(a) Blanks may not be used internal to an unquoted
identifier or constant (esg2s AB is
different from A B since AB is a single
identifier and A B represents two
identifersy, namely A followed by B

{(b) Blanks may Dbe used in a Aquoted constant or
identifier but they are included in the
value of the constant(ee«ge YA B? jis not
the same constant as %YAB?' ).

{c) One or mere blanks mast be used +to separate
the following:

(1) two quoted identifiers or
constants(eege. YAY¥IB? represents a
constant with value A'R whereas
1A% e represents two constants
with values A and B respectively).

(2) two unquoted identifiers or
constants where neither consists
solely of special characters(esge

A is eguivalent to A ;y but Al12 is



noit eguivalent to A 12).

{d) Blanks must not be used after a period except
where the period is an end—of—term
delimiters

Whenever onre or more blanks may be usedy a commenti may
be insertede A comment has the form:

/*<comment characters>%/

<comment characters”> may be any sequence of characters
not including an asterisk followed immediately by a
slashe Note that this format for a comment implies
that if / is declared as a prefix or infix operator and
is used followed by a variable then a blank must appear
between the / and the * of the variables. To help detect
errors caused by an improperly closed comment a warning
message is issued if a /% is encountered in a comments
Axiom and goal statements are special cases of
termse They are read and parsed using the operator
declarations. Thus +the axiom A<-BEC could also have

been entered as <=(A,E(3,C))e A goal statement is a

term of the form:



<-(<goal conjunciion>)e
An gxiom is a term of the form:

{—~(<hecad”>,<goal conjunctien> ).

or <head>.

<head> can be an atom or a skeletens
esZe A
AC1,%X)
YBIY(*)
{goal conjunction” can have the form
<goal literal>
or the form
€(<goal literal?>,<goal conjunction>)
{goal literal> can be an atomsyskeleton or a variablece.
A variable gcal literal is called a meta variable and

ls described in J.7 Execution Control Predicatess

A list of terms is formed with the list

constructior ®." and the end—of—-list marlter NIL. For

example the list with elements A, B and C is

represented as AsBsCeNI1L or in canonical form as



«$Age By (CyNIL)))s The empty list is represented as
NiLe A giripz is a list of characters, or more
precisely, a list_ of constants each wifh a single
character values An abbreviated format is provided to
represent sitringse The format is:
n{characters>"

For examplez

HABCY js equivalent to AeBoCcNILs

I js equivalent to "(%.%!')* (NIL.
An empty list may also be specified:s

"M is equivalent to NIL.
Note that "ABY is equivalent to «{As+(ByNIL)) only if

the period is declared as infix right—to—lefte.

- 40 -



3 Built—-ip Predicates

321 lptroduction

The implementation prevides several built—-in
predicates. These predicates provide facilities which
it is either impossible or inconvenient for the
programmer to implemént directly in PROLOG. Many
built—in predicates have side effectsy particularly
those associated with nput and outpute he built—in
predicates <can succeed or fail, exactly as other
predicates doe They <c¢an also terminate with an error
message 1if the arguments are inappropriatee.

In general it is not possible to add axioms for
built—in predicatese The single exception to this is

the OP built—-in predicate described 1in 3«7 Datadbase

Predicates.

The built—in predicates are divided into seven

groupse The groups and their members are:

Structural Predicates — ATOM, CONS, INT, SKEL,y STRING,

VAR



Input/Output Predicates — NEWLINE, READ, READCH, WRITE,

WRITECH
Arithmetic Predicates - DIFF, PROD, QUCT, REM, SUM

¥Workspace Predicates — CLEAR, COPY,2 LOAD, PCOPY, SAVE,

WSID

Database Predicates — ADDAX, AX, AXNy CONTROL, DELAX,

cP

Execution Ccecntrol Predicates - ANCE3TOR, RETRY, /e Gy
]y, FAIL, ERROR, STeP, meta

variable

Miscellaneous Predicates — DIGIT, LETTER, EQ, GEy GT,

LE, LTy NE,

The predicates of each of the above groups are

described in the following sectionss



Je2 Structural Predicates

These predicates provide for altering and testing
the structure of termse The predicates are ATOM, 1NT,
VAR, SKEL, CCNS, and STRING.

ATOM, INT, VAR, and SKEL each have a sinzle
argument . If the argument is of the type specified by
the predica te namey namely an atomy inteéer, variable
or skeleton resmpectively, then the predicate succeedse
Otherwise the predicate failse In no case is any
substitution performed br are any error messages
producede
Examples

TEST{ *X)<-INT(*X)ETESTINT( *X).

TEST( *X )<—ATCM( *X }JETESTATOM( *X).

/¥ USE TESTINT TO PROCESS AN INTEGER AND TESTATOY

TO PROCESS AN ATCHM */

Suppose we wish to define an axiom which is passed
a skeleton and prints the skeleton nameeo. In order to do
this we need the CONS predicatg. i1t is used to
decompose a skeleton into a 1list consisting of the

skeleton name following by its argumentss For example



the call <—CONS(%*X4A({B)) will cause *X to be unified
with AeBesNILe CONS may aliso be used to construct a
skeleton term from a list consisting of +the skeleton
name folluwed by {ts argumentse For example the call
{~CONS(Fe*Xe3+NILy*Y) unifies *Y with F(%*X,3)e CONS
treats a constant as a skeleton of 0 argumentis, as
shown in the examples belows If the second argument is
net a variahle then a list consisting of‘the skeleton
name Tfollowed by its arguments is unified with the
first argumente. It the second argument is a variable
then a skeleton is constructed from the first arsument.
and unified with the second argumente. In this case the
first argument must ke a lList whose first element is a
constant and whose remaining elements are to be the
argumentse. If the <first element of the list is an
integer then there must be no more elements in t he
listy, since an integer is not a valid skeleton name.,
Exampless

The following calls succeeds

<~CONS(ATOMNIL,ATOM).

<-CONS(10+NIL,10).

<—CONS(AeB{C)eDua*XeNILyA(B(C)yDy*X))e



The following axiowm accepts a skeleton ass a first
argument and returns in the second argument a skeleton
like the first but with an initial argument of 993
addede

EXPAND(*SK1,%SK2)<—- CONS(*N.¥ARGS,*SX1) &

CONS( %N+93s ARG S, *SK2 ).

Suppos2 we wish to determ:ne if an constant
contains the letter A in its valuee If the <first
argument of the STRING predicate is a constant then the
second argument is unified with 1t1he list of characters
in the value of +the constante. The following axicms
define a predicate CONSTANT(*X) which succeeds if *X is
a constant containing an Ae

CONSTANTA{%CCN) <~ STRING(*CON,*LIST) &

LISTA(¥LIST ).

LISTA( A%*REST)e

LISTA(XFIRST«*REST) <— LISTA( *REST).

The STRING predicate may also be used to compese a
constant from i1he 1list of symbols in its values There

are two possible fermats for a call to STRING:

(a) The first argument is a constante The constant



is decowposed to create a List whose
elements are the symbols in the
constant'!s valuee This list is unified
with the second argumente

{b) The first argument is a variablees The second

argument must be a list of zero or more
elemen.sy, such that each element is a
constant with a value consisting of a
single symbole The <first argument is
unified with the constant whose value
consists of the symbols in the lListe

1f the arguments are other than as prescribed an error

message 1s generateds Examples:

The following calls succeede.

<-STRING( 'ABC?!,"ABCY"),

<{-STRING( **,NIL).

<—STRING(ABCjAsBeCsNIL).

<—STR1NG(0012,1.2.NIL);

The following predicate accepts a constant as a
first argument and produces the second argument by
prefixing the first with a Qe

APPEND(®IN,*0UT) <~ STRING( *w;*s) &

STRING{ *OUT yQe*S)e



33 lanput/Quitput Fredicates

Input/Output predicates are provided to allow a
PROLCG propgram access to external datas A Tile is
iden:tified DLy a constant whose value is the Tfile
identifieres A file identifier may consist ef from 1 to
8 charactersy the first of which must be a letter and
the remainder must -be letters or digits. The
input/output predicates each have an optional file
identifier arguments I. this argument is omitted the
main input/output strecam is assumed (iees the terminal
for an interactive session)e.

READ is a predicate with one or two arsumentss
The second argument is the optional file identifiere. A
term is read from the indicated file and unified with
the first argumente The term must be delimited with
the end of term charactere 'If the end of the input
file has been reached the ©predicate failse 1f
backtracking returns to the read then a read of the
next term will be attemptedes If the term read cannet
be unified with the first argument or the format of the
term is invalid then backtracking will cause a read of

the next term te be attemptede.



WRITE is a predicate with orne or two argumentse.
The second argument is the optional <f£ile identifiere
The term specified by the first argument is written on
the indicated filee The term is delimited by the end of
term charactere. fhe term is written using prefix,
infix and suffix notation where appropriatey as
indicated by the opcrator declarations at the time of
writinge.

READCH is a predicate with one or two argumentse
The second argument is the optional file identifiers A
single <character is read from the given file. The\
constant whose value is the single character is unified
with the Ifirst argumente. If the end of an input line
(or record) has been reached then the first character
of the next line (or record) is reade If the end of
the input file has been reached then the predicate
failse it backtracking subsequently returns to this
point or if ' the unification of the first argument and
the character fails, then the next character in the
input file is read and the unification reattemptede.

WRITECH is a predicate with one or two argumentse
The second argument is the optionﬁl file identifiers

The first argument specifies a term which is formatted



using the operator declarations (as for ¥WRITE) and
placed in the output buifer for the given filee. If the
buffer is filled then it is written to the given file
(and emptied)e If the buffer 1is partially filled then
it is not written out. Note that the READCH and
¥RITECH predicates are not symetricals The WRITECH
predicate can be used to write a single character but
it is conuiderably more general than READCHe.

NEWLINE is a predicate with one optional arasuments
The argument is the file identificre. NEWLINE writes
the current output hHuffer to the given file and empties
the buffere. NEWLINE is used in conjunction with
WRITECH. For exampley the goal statement:

<—-WRITECH(®*CN ') & WRITECH(ONE) &

WRITECH(? LINE.f) & NEWLINES

causes the iollowing to be written on the terminal:

ON ONE LINE.

Note tﬁat this output is identical to that produced by
the call
<-%¥RITE('ON ONE LINE').

or by the call



<-WRITECH('ON O') & WRITE(?NE LINE!).

Se.4 Arithmetic Predicates

There are several predicates which are included to
provide the basic cperations of integer arithmetice
Each predicate has three arguments. The first two are
the input parameters and 1he 1last is the result
parametere. The first two arguments must be integerse.
The approsriate integer function of the first arguments
is unified with the third argumente.

The arithmetic predicates are:

DIFF -~ difference {subtraction)

PROD -~ product

QUCT - egquotient

REM - remainder

SUM - sum
The following axioms define a predicate which
calculates the factorial function of its first

argumente

FACT(0,1).



FACT( %X,y %Y <= DIFF(%*X,1,%X1) &
FACT( %X1,%Y1)} &
PROD( Xy %Y1 3%Y)e

The following calls succeed:

<-DIFF( 3,2, 1A).

<-PROD(10,20,200).

<-QUOT(205,10,20).

<-REM(205510,5).

<-SUM(1;20,21).

3s5 Workspace Predicates

A set of PROLOG axioms is referred to as  a
workspaces W¥hen the PROL®G system is running, the
current set of axioms is referred to as the active
workspacee In addition ‘a library of workspaces is
maintaineds A system of built-in predicates is
provided for manipulating these workspacese

A. werkspace in the library is identified by a
workspace identifiere A workspace identifier is a
sequence of from 1 to 8 letters or digitse ‘Thc first

character af the identifier must be a lettere. The



active workspace alsc has a workspace identifier
associated with it (refer *+n the WSID predicate below).
1f the identifier of the active workspace is CLEAR then
a SAVE predicate may not be executed without resetting
the workspace iden;iiier.

CLEAR is a predicate with no argumentss It has the
effect of clearing ‘he active workspace of all axioms
and setting it to the initial statee.

LOAD is a predicate with one argumentes The
argument must be an atom whose value is a valid
workspace identifiere. The active workspace is loaded.
from the library workspace with the specified
ldentifiere Any axioms or terms in the original active
workspace are loste The workspace identifier in the new
active workspace is set to that of the workspace which
was loadede

SAVE is a predicate with no argumentse. It causes
the active workspace to be saved in the library member
specified Dby the workspace identifier in the active
vorkspacees The active workspace is left unchangede.

¥SID may have zZero, one or two argumentse ¥hen
used with no arguments it causes the workspace

identifier associated with the active workspace to be



displayecds When used with one argument, the argument
must specify a valid woirkspace identificrs The
workspace identifier in the active workspdce is reset
to the specified values When WSID is used with two
arguments an attempt is made te unifty the current
workspace identifier with the second arguments I£f this
unification succeeds, the current workspace identifier
is reset to the value specified by the fifst argumente
The first argument must be a valid workspace identiiier
Or An error ocCcCurse

COPY is a predicate with one or two argunentse
The first argument always specifies a workspace
identifer. Data is copied into the active workspsace
from the library workspace with the given identifiere.
If a single argument is specified then all axioms and
operator declarations are copied from the library
workspacee If a second argument is specified then it
must be an ldentifier (isece an atom)e All axioms and
all operator declarations for the given identifier are
fo be copiedes When an attempt is made to copy the
axioms for a given predicate name and number of
arguments a check is made to see 1if any axioms exist

for that name and number of arguments in the active



workspacg- 1f any such axioms exist they ar2 deleted
before the new axioms are copied ins Similtarly i1if an
operator declaration for an identifier is’found in the
library workspace then all cleclarations for the
operator in the active workspace are deleted and the
new declaration is addede

PCOPY is a predicate wilh one or two argumentse. 1t
is similar to COPY but it performs a protected copyve
The difference is that PCOPY never deletes axioms or
operator declarations from the active workspaces Yhen
the situation arises which causes COPY to perform a
deletiony PCOPY leaves the active workspace data intact
and does not copyY the axioms or operator declarations

in guestione

3s6 Datavase Predicates

The database built—in predicates provide the
facility for updating the database (iece the set of
axioms in the active workspace)s The predicates
provided are ADDAX, AX, AXN, CONTROL, DELAX and OPe.

The ADIDAX predicate is used to add an axiom to the



databases
ai gument m

(a) a

(b) a

The axiom
the databa
the axiom
predicate
argument
variablee
arguments
specifies
in the lis
and number

of axiomsz:

It has one or +two argumentse. The first
ust be a valid axiome It may be:s
unit axiome In this case it is 5 skeleton or
an atome
non~unit axloms In this case it is of t1he
form <head><{-<pbody”. <head”> must be a
skeleton or atoms
specified by the first argument is added to
See 1f a single argumenf is specified then
is added after all other axioms with the same
name and number of argumentse. If the second
is speciflied it must be an integer or a
We first explain the case of a call with two
where the second is an integere This integer
where this axiom is ta be addeds as an index

t of all axioms for the same predicate name

of argumentse Consider the following list

A(1l).

A(2)<-B.

A(%X)<=C(*X)e

A(4).

1t the predicate call <~ADDAX(A(M)). or



<~ADDAX(A{M)y5)e or <—ADDAX(A(M)4100)e were ?!ssued then
ite new list would be:

A(1). )

A(2)<-B.

ACKX )<=C( %X )

A(4).

A(M).
If the call <—ADDAX(A(Q);1)e were then issued the list
would become:

A(Q).

A(C1).

A(2)<-B.

A(%X)<=C(*X)e

A(4).

A(M)e
The index specifled gives the index in the list where
the axiom 1is to be addede If the index is 1 or less
then the axiom 1is added before the first axiom in the
lists Similarly if the index is greater than the index
of the 1last axion then the new axiom is added at the
end of the liste

1f ADDAX is called with a second argument of a

variabley the axiom specifiied by the first argument is



added at the end of the 1list and its ind=:x is then
ur.fied with the second argument.

The BPELAX predicate is used to delete an axiom
from the databases i1t may be called with one or two
argutientss The first argument is a term representing an
axiome The first argument may be:

(a) a unit axioms In this case it is a skeleton or

atome

{b) a non—unit axiocne in this case it is oi the

form <head?>{-<body>s <head” must be a
skeleton or atens

Thus the first argument specifies the name and
nuabher of arguments for the axiom to be deleteds Iif
only one argument is specified +then an attempt is made
to ugliy the argument with each of the relevant axioms
in the databasce The axioms are selected in the order
in which they appear in the databaseces If no axiom is
found which is wunifiable with the first argument then
the predicate failse 1f the unification succeeds for an
axiom - then the axiom is deleted and the predicate
succeedse 1f backtracking subsequently returns to this
point then the predicate will fail, thus preventing

accidental deletion of further axiomse



1t twa arguments are specizticd then the second
argument is considered to be the axiom indexXx. 1t may be
a variable or an integere. The attempts to unify the
first argument with the database axioms proceeds as in
the case of one arguhent. I£f the wunifcation succeeds
for a given axiom then an attempt is made to unify the
axiom index with the second argumente. If the attempt
fails then the search througzh the axioms is resumeds. If
the attempt succeeds then the axiom is deleted and the
predicate succeedse ir backtracking subseéuently
returns to this point then the predicate will faile

The AX and AXN predicates are used to retrieve
axioms from the databasee The AXN upredicate retrieves
axioms using the predicate name and numbesr of
argumentse The AX predicate retrieves axioms using a
model axiom heades

The AXN predicate has either of the two following

formats:

AXN( <nameX,<nargs>;<axiom> )

AXN{ <name?>,<nargs>,<axiom”>,<index> )

The predicate call AXN({(C;2¢%A) will cause %A to be



unified with +the first oaxiom for predicat: ¢ with 2
argumentse 1f there are no axioms for C with two
arguments then this call would faitle if the call
succeeds and backtracking subsequently returns to this
point then an attempt will be made to unify *A with the
next axiom for C with two argumentsy and So oOne The
predicate call AXN(C,Z.*A,*I) functions identically
except that when the call succeeds, *¥I is unified with
the index of +the axiom unified with *Ae Similarly the
call AXN(C,Z,*A;S) will retrieve the third axiom ior C
with two arguments, if one existsa. The predicate calil
AXN(Cy*Ny*A ) will unify %N with O and unify %A with the
first axjiom for C wifh 0 argzumentse. If +this
unification fails or backtracking returns to this point
then the next axiem for C with ¢ arguments is selecteds
When all axioms for C with 0O arguments are exhausted
then N is unified with 1 and the axioms for C with 1
argument are retrieved in turne. This process can
continue until all the axioms for C have been examinede
The fourth index argument may be included and it
functiens analogously to the previous case. For example
the goal statement:

C—AXN(F % %A )JEGWRITE(*A)ISFALL.



lists all axioms for predicate Fe
The goal statement

C—AXN{ Fy*N,*, 1 )EWRITE( *N)EFATLe

writes out the different number of arguments for
which F has an axiome

The call AXN(*¥NAME;*N,%A) can bé used to examine
the axioms for each predicate name in turn. First a
predicate name is selected frowm the database and
unified with 1he first argunente Then each of the
axioms for this predicate are examined in turn as in
the previous eXampless After the last axiom for +the
given name is examined then the first argument will be
unified with another name in the database and +the
search will continues The order in which the predicate

names are examined is not readily predictable since it

depends on the hashing algorithm of this
implementatione Consequently this order should be
considered to be arbitrarye. The following goal

statement will cause all axioms in the database to be
listed:

C—AXN( %, %,%A)GWRITE(®A J6FAIL.

The AX predicate functions in & manner very



similar to the AXN predicatece Again there are two bkasic
formatss:
AX(<nhead>,<axiom> ).

AX(<head>y;<axiom?>y4<index> ).

axiom> and <index” are treated exactly as for the AXN
predicatee. <nead? is a model axiom head and may be a
skeletony an atom or a variablee 17T <head> is not a
variable then it specifies a predicate name and number
of arguments implicitly. The axioms for this name and
number of arguments are examined as for AXN. 1f <head>
is a variable then all axioms in the database are
examined in turn as for AXW{ ¥,%, %A ). if an axiom
unifies with the specified axiom then a model of the
axiom hzad is unified with the first arguumnente By a
model we mean a sXeleton with anonymous variables for
all argumentise The model idea is introduced so that a
theorem prover written in PRUOLOG may use AX to retrieve
the axioas relevant to & predicate term without

actually unifying the axiom head and the predicate

terme

The OP predicate is used to manipulate operator



declarations. Its use was introduced in 2:4 Ire Syntax

Adding a unit axiom for the (OP predicate
(with 3 arguments) is equivalent to udding an operator
declarationas Similarly, deletirz a unit OP axiom
deletes the operator declaration representede Thus one
can delete an operator declaration with a «c¢all of the
form:

DELAX( CP(<operator>,{typed,;<priority>))e.

where:
operator?> is aﬁ atom identifying the operators
{type> is an atom specifying the declaration type and

may be any one of LRyrL;PREFIX or SUFF1Xe.
<priority> may be an integer or a variable.
If a matching declaration is found it is deleted.

A call to the OP predicate may be used te retrieve
an operator declarations For example, the call
OP{ e« 3RLy*P ) succeeds if """ is declared as RLe In this
case *P would be unified with the prioritye. The call
OP( o y XT %P ) succeeds if there is an operator
declaration for "." The following goal statement will
list all PREFIX operators:

<-0P(*QP 4 PREFIX 4% )EWRITE( %OP )&FAIL.

In this case backtracking to the OP predicate call
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causes each prefix uecclaration to be retricved in turne
Note that the order in which the declaraticns are
retrieved is pseudo—random and net the order in which
the orizinal declarations were addede However if an
operator 1is declared as both prefix and infix, the
prefix declaration is always retrieved firste The
following goal statement will 1list all' operator
declarations:

{—OP(*OP,*Ty*P)EWRITE( OP{ ¥OP,%*T,%®) )J6GFAlLo»

The CCNTROL predicate is used to provide some
special gleval variable facilitiese The CONTROL
predicale has two arguments, a key and a resuilte For
exampley, the «call <—CCNTROL( TOP,*X) retrieves the
result corresponding to key TOP and unifies this result
with %X, The kxey and result pairs are manipulated in a
fashion similar to operator declarationse To add a key-—
result pairy; an axiom for CONTROL is addede Adding the
axiom CONTROL(TOP,3) records result 3 for the key TOP.
Only one pair can be recorded for any key value. 1£f a
palr exists with the same key as one being added, then
the previous pair is replacede The key must be an atome

The result associated with the key must be an atom or



an integere. A key—-result pair may be deleted by
deleting the appropriater axiom = for the CONTROL
predicates For vexample <-DPELAX( CONTROL(TOP,*)) will
delete the key—result pair with key TOPs A subsequent
call of the form <-CONTROL(TOP,*) would fail since no
pair existse. The call <-=DLELAX(CONTRCL{TOP,39)) would
succeed only if the xey-;esult pa}r of TOP-99 is
currently recordeds The Key—result pairs. recorded in
the data base may be gueried in a manner similar to

that used for operator cveclarationse For example:

C—CONTROL(* K ¥R ISWRITE( %K %R )IEFATL.

lists all key—result paiers in the data baseo
<-CONTROL( *X, 89 )6WRITE(*K)EFAIL.

lists all keys with a result of 99.
<—CONTROL( I 4*R)IESUM( *R,1,%*R2)EADDAX( CENTROL{ I,4%*R2))e

increments the result intezer corresponding to key I.

The CONTROL built—in predicate is also used with
certain special Xeys to control sys;em optionse 1f the
Key VERBOSE has an associated result of ON the t he
system lists any goai statements which succecde. The

goal statement {-<{goal conjunction> is written in the



form {goal cornjunction><—, displayi. g any
in.tantiations made for variables in the proocfe The
goal statement <-SUM(2,2,%) causes SUM(2,2,4)<- to be
written on the terminale. 1f the key VERBOSE does not
have result ON, then a successful goal statement is not
listeds
If the key NOAX has an associated result of ON

then the system indicates each call to a predicate tor
which there are no axioms (and no comnpiled routines).
For each such call a message of the form "NOAX — xxxxx
nn" is displayede xxxxx is replaced by the predicate
name and nn is replaced by the number of argumentse.
With this feature, the goal <-SUM(1,2.3)|PRODQ(3,44,12)
causes the followinm messages to be displayed:

NCAX — 3SUM 2

NOAX - PRODQ 3

?
This feature 1s initially enabled and may be disabled
by deleting the CONTROL(NOAX,ON) axiom or adding
CONTROL{ NOAXyOFF)e To enhance the usability of this
feature, the FAIL predicate (with no arguments) is
included as a built=in predicate which always failse.

Thus spurious messages of the form NOAX — FAI1L 0 are



avoidedoe

The key LOWER is used to control the transla-ion
of input from the main input strcame If LOWER jis set +to
ON then lewer case letters Ifrom the terminal are input
as lower casees If LOWER is not set to ON +then lower
case letters from the terminal are tganslated to upper

case as they are inpute LOWER is initially ser to CFFe.

3.7 Execution Control Predicates

The execution control predicates provide
facilities for tesfing and controlling the progress of
a proofe The ANCESTOR, RETRYy /y &y |y FAIL, ERROR, and
STOP predicates are included and the meta variable
facility is also providede

The parent of a given literal in a proof is the
literal which invoked the axiom containing ithe given
literale In the implication tree describing the proof,
the parent literal labels the node above that labelled
with the literale. The ancestors of a Lliteral include

its parent and its parentfis ancestorse. The ANCESTOR

predicate is used to examine the ancestors of t he



literal which invek d the predicate. When ANCESTOR is
used with cne argument, the argumnent is unified -ith
the most recent ancestor for which this is possible. If
the argument cannot be unified with any ancestor, the
predicate failse If the predicate succeeds and
subsequently backtracking returns to this point in the
proof, the argument is wunified with the aext most
recent ancestor and so ene The following axiom will
list all of the ancestors of the ANCESTOR literal and
then fail.

LISTANCK—ANCESTOR{ *A)SWRITE( XA )SFAIL. Note that
the first ancestor listed will be LISTANC.

When the ANCESTOR predicate is used with twao
arguments the first argument functions in the same ‘way
as the single argument abovee. The second argumnent is

the ancestor indexe For a given literal the ancestor

index of its parent is 1, the ancestor index of its
parent?!s parent is 29 etce The first argument is
unified with each ancestor in turn as aboves If this
unification is successful then the second argument is
unified with the current ancestor indexe The following
axlom will list the five most recent ancestors of the

ANCESTOR literal:



LY}STANC2<—ANCETTOR( #A4*N)EWRITE(*AJIEEQ(*N,5)»

The RETRY predicate is provided to facilitate
recovery from an error situation. After a correction
has been made;y the proof may be restarted ¥rom some
point before the errore. RETRY has oné or two argunments
which control a search througzh the ancestors =xactly as
for ANCESTORe The difference is the actien taken upon
successes lf an appropriate ancestor is found, the proof
is backed up to the point where the subproof for the
ancestor literal began and the proof is restarted from
that point. RETRY restores the proof to the state it
had at a particular voint in the paste Conseguently
RETRY is only useful when some change has been made to

the axiomse.

The slash predicate with no arguments wvas

described in 2.3 PROLOG Execution and Backirackings

The slash predicate is also provided in a more general
form with either one or two argumentse. The arguments
control a search through the ancestors exactly as for
ANCESTOK and RETRY. if this search falils then the

predicate failse If the search succeeds then certain



available <c¢choices aure eliminated frem an existing
portion ¢f the prcofe All choice points are femovei in
the part of the procef from the point of selectien of
the given ancestor liferal to the current point in the
prootfe Thus a call of the form /(*) has exactly the
same effect as the simple nullary / calle Consider the
following examplel

AL~-BECED.

B<—~E,

C<~FEG.

Ee

Fa.

G<—=/(C)EHa

<-4A».

The implication tree has the following form when the

unary siash is called:



coal

A
/ 1\
/1 N\
/7 1\
B C D
/ AN
/ I\
E F G
X x I\
I\
J{Cc) H

Alc choice points ZFrom the selection of C<-F&G onward
are elimina tede Thus if H fails an alternate proof for
E will be attempted (and the subproof of C will be

deleted ).

The meta variable facility allews a variable to be
used in place of a literal in a goal or in the body of
an axiomes When the variable is encountered in a proof
it must be bound to a literals. The preof proceeds as if
this literal occurred instead of the variablee For
example; the fellouwing axiom defines a predicate EXEC
which reads a term and Yexecutes™ its

EXECS—READ( *X)E*X,

Axioms are included for the E&(X*y,%}) and the |{3x,3%)



predicatess The axioms for | are:
JORX %Y )<=%X,
(%X %7 )<—%Y,
These axioms allow alternatives to be specified in an
axiom body or goal with +the desired effects The axiom
for & is:z
ELHX %Y )=S0 X %Y )0
This axiom may look a bit ridiculous but it is useful,
particularly when using the meta variabie facilitye. For
instancey if as input to the EXEC axiom above, ASH is
specifiedy, then this axiom for & would be invoked and A
and then B would be calledes
The FAIL predicate (with no arguments) is provided
as a built—in predicate which always failss This
predicate is provided even though providing no axioms
for FAIL would yield a predigate which always failse
The reasons for providing such a predicate are:z
(a) The FAl1L predicate gives a standard nane for a
predicate which always failses This imposes a
programming standard which may improve program
readabilitye This stanaard predicate could also
make it ecasier for a compiler to perform certain

optimizationse



(b)) The provision . the bLullt—in FAlL predicate makes
the NOAX feature of the CONTROL <feature -iore
usefule Refer to the description of the CONTROL

predicate in 3«6 Database Predicates for further

detailse

The STQP predicate is used to leave the PROLOG
systeme The execution of the STOP predicate terminates
the PROLOG session and returns to the operating system.
All axioms and operaior declarations in the current

workspace are loste

328 Miscellaneous Predicates

The miscellaneous group includes predicates ito
test the collating sequence of constants and to test if
a symbol is a letter or a digite A collating sequence
is defined for the values of constants as follows:

(a) Any atom is less than any integere

{b) Intepers are reclated by the conventional

ordering for intepgerse

(c) Atoms are ordered by the lexical ordering

imposed when the ordering of the symbols is



as defined by the standard FRCDIC orderinegse.
Six built—-in predice tes are providod teat the
relut{ion hetween two constantse Fach predicate h & t o
aryguments, hoth of which mus ¢t constantae. The
relations which coaunse ecach nredicate 1o succecd
listed relowe

LT = arcument 1 is lesws th o arrument

L' =~ arpument 1 4x lesae th noor eqgqua U ta arpu ent
2

GT arpuacent 1 e pgroeat ¢ than arpu went 2

Gl - araument 1 I« vrceater than ar o u 1 to

arzument 2
EQ argunmcent 1 is egqual to rerus nto )

NE - arguncut 1 is not equal to argpurment 2

Examples: The tollowing nredicate calls succeed.
<=1T(A,37)e
<=Gr(d,'=-2%),
<=GF(A3,A).
<=NF{ ABC,C ).
C—FQ( YAPC Y JABC)

C=FQ(12,0 40120,
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The predicates LETTER and DIGIT each have one
arguments The argument must be a const#ni. The
predicates test if the wvalue of the constant is a
single syvmbol belonging to the given class, 1 thne
arpument of LETTER is a consiant cons%sting of a single
capital letter then the call succeedse If the argument
of DIGIT is an integer from 0 to O inclusive then the
call succeedss
Examples: The following predicate calls succeed

<-LETTER(Z).

<-DIGIT(0).

<~DIG1T('+0001").



4 The Inplementatio:

The

The
language
simplify
program

additicn

Introduction

essential features of the implementation ares

(a) Deta stiructures for
—terms
-substitutions
—environments
—axioms
-symbols

(b) Algorithms for
—unification
—interpreting axioms
—backtracking
-reading terns

—writing terms

system is implemented in 08/370 assembler
and relies heavily on the use ot macros to
the implementation proceduree. A general set of
structure and linkage macros is used( 7). In

several macsros were written for this



particular applicatione Included in this group are
macros for building terws and axioms as well as
describing table entriese

The /370 word consists of 32 bits organized as 4
bytes of 8 bits eache An address is speciiied by the
‘rightmost (1Low order) three bytes in a WOTrde This
addressing organization influences the details of many
of the da*a structures in the implementatién.

The data structures used rely heavily on those
developed in the original PROLOG 1interpreters in
particular the elegant and efficient structure sharing
technique used therein to represent terms and
substitutions i1s used here with minor changes onlye

A symbol table is maintained for all identifiers
used in the active workspaces Each identifier is
asslisned a unique string descriptor and is
characterized by the address.of this descriptor. Thus
two identifiers are egqual if and only if the
corresponding descriptor addresses are equale The

symbol table is discussed further in 4.7 Symbol Table

Organizations




4.2 Representation of Input Terms and Axioms

73]

An jipput term is a term which has no substitutions

assoclated with ite An axiom is an input term until it

is invoked in a proofy at which point substitutions may

OCCUTre

An irput term is represented by a term ord of the

forms3

wherec A is an aderess or number and C is a one

byte type code identifying the kKind of term

representede C is called the term ideptifier or term

IDe A is called the term values The types represented
by C are :

(a) an integer: The term vord represents an
integere. The term value is a twenty—four bit
signed twos complement representation of the
integers. Thus integers ‘from -83,388:608 +to
843884607 inclusive can be representcde

(b)) a variable: The term word represents a



variablee Each variable in an input term is
represcented by a caponical pumber from 1 to
ny where is the number of distinct variables
in the terme Thus it the axiom
A(*X)I<=B(*Y,F(*X))e 1is read, then *X is
associated with 1 and *Y is associated with
2e A variable in an input term is represented
by a term word with an 1D inaicating a
variable and a value which is a twenty—ifiour
bit displaceiiente The displacement for a
variable is derived directly <from the.
canonical number of the variable in the
original terms The displacementsy which is
equivalent to the canonical number, is used
tc reduce the calculations reguired to
retrieve the value of an instantiated
variablee The use pf the displacement will be

discussed further in 4.3 Substitution and

Cognstructed Termse

(c) un ateme The term word represents an atcme
The term value specifies the address of a
symbol table entry for the atome The symbol

table entry for an identifier is called a



siring descoriptors

(d) a skeletone. The term word rtrepresents a
skeleton by specifying the address of a

skeleton descriptor as follows:

Term word Skeleton descriptor

lc)l A& ] ——— >IN ] S !

] Argument N |

A skeleton descriptor occupies two or more
wordse The first word is called the gskeleton
keye The skeleton key consists of a one byte
count{N) and the address(S) of the string
descriptor for the skeleton namee N
specifies the number of arguments that the
skeleton hase A skeleton can have froem 1 to
255 arguments{ inclusive)e Following the

skeleton key are N tern words representing

the arguments of the skeletone
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The following diagirain 3hows the representatioana of the
axiom G<-B( 134*Y,F{(%X)). The term 1Ds for variables,
atomsy integers and skeletons are repesented as V,‘A, 1
and S respectivelye.e . The displacements for variables
with canonical numbers 1 and 2 are represented by D1
and D2 respectivelye. A pointer to the string

descriptor for xxx is represented by —-> "xxx!l,

Isl - |
_......_l_._-
|
| —————— —
-> |2} | —— > ul_mn
J =1
JA] | ———=> ugn
j————-1
Isl « |
N —_—————
|
] —_—————— e
-> 3] | ==—==> ugnu
e — |
1} 13 |
| —————-1
|vi b1 |
| ————-1
[sl « |
—_———]——
!
I _________
-> |1 | =—> wFn
| ~——mm- |
Ivl 2 |



4.3 Substitution and Construcied Terms

When an axiom is activated in a proofy an
enviropment is created for the axiome The environment
contains information for backtracKkinge It alsoc contains
a description of all substitions maae in the axiome
This sgbstitution infqruati.n is recorded 'In a 1list

called the substitution list or the jinstantiation liste

A term which has substitutions associated with it

is called a coaonstructed terme W¥hen an axienm is
activatedy, the axiom (and all of its subterms) become
constructed termse A constructed term is represented as
an input term with an associated substitution
environmente. A constructed term is an instancerf.the
corresponding input terme The value of the constpucted
term may be determined from the wvalue of t he
corresponding input term by using the environment to
retrieve the substitutions made for the variables in
the input 1erme. The internal representation of a
constructed term requires two woridse. The first word is
the term word for the inpuat terne The second word
specifies the address of the appropriate environmente

The instantiation list in the environment has an



eantry for each vaciable in the original axiome The
entry for a specific variable 1is either marked to
indicate that the variable is wunassigned or else the
entry coentains a constructed term giving the value of
the term substituted for the variablee. Thus a variable
is instantiated by placing the appropriate constructed
term in  the instantiation list entrye This
instantiation may be undone during backtracking by
resetting the entry to Y"unassignedW. Another important
feature of this representation for constructed terms is
in the area of storage requirementse When an axiom is
activated an environment of fixed size is requireds
This is the only space required (in aadition to the
space for the input axiom)y although the variables in
the axiom may be instantiated +to terms of arvitrary
size and complexitye.

The instantiation list is a vector of entries.-

EBach entry (or wvalue cell) corresponds to a variable in

the axiom associated with the environment containing
the instantiation 1lists The first instantiation list
entry corresponds to the varia®le with canonical number
1, the secend ontry to the variable with canonical

number 2 and so one The displacement specified in the



term word for a varlable is actually the displacement
of the value cell for that variable from the beginning
of the environmente. Using this displacement,y, the wvalue
cell for a variable can be referenced directly, with no
search necessary.

The iollowing diagram shows a constructed term
representation four the term F(3,G(*X;H(M))sH(M))e This
term has been constructed Irom thev input term
F{3,G(*X,%Y )y*Y) by substituting H(*Z) for *¥Y and then

substituting M for *Z.
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Isi |—=> 13| [-—=> ug™

s e o s e S e D e e

| . | Ity 3 |
——fmmm ] e
| Isi |--> J2I | —-> ngn
| | =~ T R |
| {v] 2 | vl p1 |
] ———————— |————— |
| lvli n2 |
| ——
|
l —_— —
-2 ] Environment for F{3,G{%*X,%xY),¥*Y)
- |-~
| unassigned ] Entry 1 — Cell for *X
|- | ———— ]
IS] | - | Entry 2 - Cell for *Y
P I_- l -
| }
] | -
| -> 1 | Enve for H({*Z)
i e ] -
| l N |—=> mn
1 -
|
l _________
-> j1} | =—=> njjn
| mmm e |
Ivi p1 |

4e4 Unification

The unifipation algorithm used is a simple depth
first algorithme The algorithm attempts to match two

constructed termse The natching process either



succeeds or failse. If it fails +then the effect of any
substitutions made during *he unification attempt is
removed (ieee the value cells for any variables which
were instantiated are reset to "unassigned").

The uniilcation algorithm does not have an
Hoccurs! checke These means that it will not detect
that *X and F{*X) a«rce net unifiables An attempt +to
unify these two terms will cause F(*X) 1o be
substituted for #Xs Printing the resultant term will
generate an %infinite" output of the form F(F(Fees
This check is omitted for reasons of efficieancy ane it
appears that the occurs check is seldom necessary in
PROLOG progrommings

The structure sharing technique used to represent
constructed terms requires the unification algorithm to
1oo0k up" the value of any variable that it encoﬁnters.
The funeamental step oif this lookup process is called
derefercecncinge Corresponding to a constructed term is
a dereferenced value which is derived as follows:

(1) If the term word of the constructed term does

net specifiy a variable then the dereferenced
value is the constructed fcrm itselfe.

{2) If the input term |is an uninstantiated



variable (indicated by an unassigned value
cell for the variable)y, then the dereferenced
value ot the constructed term is the
construcfed term itself.

(3) 1¢ the term word specifies an 1instantiated
variable then the éereferenced value of the
term is the dereferenced value of the
constructed term in the value éell for the

variables

Note that in (3) above, a search down a chain of
references will occur in the case of a variable bound
teo a variable which is bound to a variable, etcCe By
dereferencing all terms ihe unification algorithm
attemnpts to reduce the time reguired subseguently to
retrieve the value of a terme.

In the following description of the wunification
processy it is assumed that all constructed terms are
dereferenced before checking them for matchinge Also
the statement NA is a skeleton!" is used as an
abbreviaticn for YThe dereferencea value of A is a
skeleton. Similarly "A is a variable'" is used as an

abbreviation for "The dereferenced value of A is an



uninstantiated var:ablel, The various  cases ‘which
occur in the unification of the two constructeg terus A
and B are described below:

(1> A and B are both variablese If A and B both
refer +to the same var;able (ieea the
addresses of their value cells are equal)y
then return "success's 1f A and B refer to
different variables then the variables must
become bound to each othere. Ve -must decide
whether to substitute A for B or B foi A. The
rule used 1isz Substifute the variable whose
value cell has the lowest address for the
variable vwhose value c¢ell has the highest
addresse This ordering is selected so that a
trace entry is generated as seldom as
possible( trace e¢ntries are described in 4.7

Backtracking and Trace Entries)e Perform the

indicated substitution and return "“success'l.
The substitution of (say) B for A is
performed by placing the censtructed term for
B in the value cell for Ae This 1is called
Yassigning B to AW,

{2) A is a variable and B 1is not a variablee.



Assign B ‘0o A and return Y“Ysuccess!.

(3) B 1s & variable and A is not a variawlee

”

Assign A to B and return "“"success¥,

(4Y A is a constgnt and B is not a variablee If B
is a constant equal in value to A then return
“"success!y otherwise return "“"failure'.

(5) A is a skeleton and B is not a variable. If B
is not a skeleton then return "fajilure', It
the skeleton name or number of afguments for
B is not the same as for A then  return
flfailureli, it the name and number of
arguments match then call the wunification
aluorithm recursively for each pair of
corresponding argument termse. If any of these
unifications fail then return "Yfailure'. If

they all succeed then return Ysuccess".,

In order to implement the recursion required when
matching skeletonsy a unification stack is useds Each
entry in the stack contains five wordssy namely:

-~ the term word for Ae.
-— the environment pointer for A.

-~ the term word for Be



-~ the environment pointer for Be.
— the i1ndex of the current skeleton

argumente

425 Axlom Environmenis

Corrrsponding to each activation of an axiom there
is an environment. The environment contains an
instantiation list as described eariiers The
environment also contains other information required

for backtracXinge

ng algorithm ensures

e

The nature of the backtrack
that the lifetimes of axiom environments are nestede
More coxplicitly, if environment A is created hefére
environment B then environment B will be annihilated
before Ae Consequently environments may be allocated
and freed according to a stack discipline in the
environuent stacke

Three registers arc reserved for pointing to the
environment stacke The register names and their
respective use¢s ares

RFREE points to the beginning of the free



area on the environment stacke

RENV points to the current envlronmcht.

RFAIL points to the failure enQironment(the
failure environment is - explained in 4.7

Backtracking and Trace Enptries e

¥hen an axiom is about 1o be invoked; RENV points

to the parent epnvironment , that is, the environment

for the axiom which contains +the %call?” to the current
axiome To crcate the axiom environmént the free pointer
(RFREE) is inéremented by the size of the new
environment and the environment pointer (RENV) is set
to +the newly éreated environmént. The following

diagram illustrates the use of these registerse

Free
Area

Current
Environment
{———-RENY

Parent

|

|

!

]< RFREE

|

l

!

|
Environment |

—— G e Mo e G By Cmee e Wik

Other |
Environments|
-1
Fajilure |
Environment |
———————————— } <——=RFAIL
Other |
Environments|

— — — —— — -

— —



An environment contains the following fields:
- failure code and failure pointere
- failure environment pointere
- guccess ccde and success pointere.
-~ success environment pointers
- term wvord for argument literale.
— the instantiation list.

The data related to failure is described in 4.7

Backtracking and Trace Entriess. The success
environment pointer is a pointer to the parent

environment which 1is the environment to which control
will be returned when this subgoal succeedses The
arcgupent literal is the term from the parent axiom with
which the head of this axiom will be unifiede The term
word for the argument literal is a word describing the
argument literal in the format (term IDspointer).
Since the argument term nust be an atom or a skeleton
the standard format for the term ID is relaxede An atom
is represented by the standard codee A skeleton may be
represented using any other eight bit codes

The success code and success pointer occupy one
words On entiry to an axiom this code/pointer is

contained in register RRET. The code can have two



L e e

interpretatlons:

(1) fh?-code is zeroe This occurs if the parent
§¥;om is interpretede. In thié case the
?olnter polints to the term word <fer the
remalining conjunction of the right hand side
9f fhe axiome A success return will go back
fo fhe appropriate place in the interpreter
‘to process this conjunctione

{2) The code is nonzeroe. This occurs if the parent

axiom is compiled. In this case the pointer

[t
HE

g;yes the address in the parent compiled’
rqutine to which return is to be made. This
(';\céde pointer pair may be set in the RREY
?eglsfer with a single BAL or BALR

instructione

On entry to an axiomy an. environment is allocateds

?b?'s;ze pf the environment depends on the size of the
§g§tagtiation liste The number of entries in the
}nstantlutlon list is egqual to the number of distinct
variables in the original axiome On entry to an axiom
all entries in the instantiation list are marked as

"unassignedW by setting the term word in the entry to



4.6 The Main Ipnterpreter Routine

Thé main interpreter routine interpretéanioms- 1t
is called from a parent axiom and passed ’an aféﬁment
literal as a parameters The first axicm whose hedd%féé
the same predicate name and number of argumenté ”is
activatede An environment is created and inltialiiéd
and the wunification of the argument literal and {hé
axiom head 1is attemptedoe. If the unification succeeds
then the literals of the axiom body are each "called™
in turne Tf the original unification fails or any of
the M"called" 1literals <faily ‘then the backtracking
routine is invoked.

A significant feature of the main interpreter
routine is the means of accessing axiomse The string
descriptor address is obtained from the argument
literal: This string descriptor is the head of a queue
of predicate entrieses There are two types of predicate
entrye One is the system entry which contains

information about operator declarations and file



identifierse The other type of predicate entry centains
information about axioms fur the given predicate name
and a specific number of argumentse. The information
contained is a pu%nter to a 1list of axioms or to a
routine for a "“compiled" axiome The majority of the
built=in predicates are implemented in assembler code
and they are accessed through this routine—type entrye.

For a routine entry the predicate éntry pointer
gives the address of the routines« The routine consists
of the routine entry data followed by the actual codee.
The principal element o the entry data is the
environment sizee To call a predicate routiney, control
is passed to a common entry seguence which allocates an
environment and saves the important values in the
environmente Contrel is then passed to the routine
codeo.

For a predicate entry‘of ithe axiom type the
pointer gives the address of the first of a queue of
axicm entriese Each axiom entry describes one axiome
The entry also contains a word indicating the size of
the instantiation list so that the»interpreter routine
can allocate an environment of the correct sizece

The relationship of string  descriptors and



predicate entries is illustrated by the

following

diagranie The axiom entries are shown for the ax*ons

A(142)y A <= B and A <- C.

] String Descriptor]

| for A ]
|
|
'
] Predicate Entry |-——>| Axiom entry
| for A with 2 arguments] | for A(1,2) ]
|
|
A\
| Predicate Entry |-——=>] Axiom entry }
} for A with no argument] | for A <= B |

!

|
v

| Axiom entry

| for A <= ¢C
4.7 Backiracking and Trace Entries
The backtracking routine is called

unificuation routine and from compiled axiom

from the

routines



when a failure occurse “he basic functions performed in
backtracking are:

(a) Determine the environment to which the proof
must "backup" and reset the current
environment pointer to this environmente This
environment is called the failure

environment Keset the free pointer to free

all environments subseqguent to the failure
environmente Ad,just the free pointer to
change the size of the failure environment
- ( the next axiom may need an instantiation
list of different size).
(b) Remove the effect of all substitutions made
since the failure environment was activatedo
(c) Reload the previous failure environment
pointer from the failure environmente
(d) Load the failure pointer <from the fallure
environment and return elthef to the

interpreter or the compiled axiom routinee.

The address of the current failure environment
(iee the address of the environment to which the proof

must Ybackup')s, is always contained in the failure



register, RFAILes On entry to an axiom this pqinteb is
saved in the new enviroament so that it may bé restered
on backtracking{step (c) above)e The processing of an
axiom mev or may not ‘reset the failure environmente. 1If
the last axiom for a given p:redicate name and number of
arguments is being processed, the failure environment
pointer is not changied, since no new alternavtives have
been introducede On the other hand if the axiom is not
the last then the failure environment poinfer is reset
te point to the current environment and the failure
code/pointer in the current environment is set
appropriatelyes

In order to remove the effects of the appropriate
substitutions during backtracking, a record is kept of
substitutionse. This record takes the form of trace
entries, each of which contains the address of the
value cell which was set by a substitutions To ""undo"
the substitution corresponding to a trace entry it is
necessary only to set the value cell indicated by the
entry to Yunassigned"e. When backtracking is performed,
the list of trace entries is processed and all
substitutions made since the activation of the faiiure

environment are erasede There is no reason to reset the
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value cells in the fuilare environment and subseguent

environments since these environments are freed in the

backtracking processe. Consequently, trace entries are
not gen-rated for . assignments into the failure
environment and subsequent environmentse For this

reasony when unifying two variables, the substitution
is always performed so that the mnst recently created
value cell (s modified. This cause: a trace entry to be
gzenerated only when necessarys

Each trace ehtry occupies one words Trace entries
are organized in blocks which are prlaced 1in the
environment stacke The first entry in a trace Dblock
(iee the entry with the lowest asddress) is a‘special
entry called a link enirys. This entry points +to the
top of the previous trace blocky in order that the
backtrack routine can process each trace entry in turna.

The following diagram illustrates the structure:



Trace Block B | trace |

| entryl

—

| Link | ) |

} entry|—=——- Lower P

esccececasacae t-—"“"‘—l . I Addresses l

! | ' |
Environmnent B i | v

|

NS00 O 25090 OSSO l —————— i

|
|
I |
I
]

| trace }<——-
| entry|
Trace Block A | ——— |
Jtrace |
| e:rtryl
E——
] link |
| entry|———-
eooevmss0noe '————-—l l
| | |
Environment A | ! ]
| ! v

Trace block A contains entries for Substitutioﬁs
made after the activation of environment A and before
the activation of environment 3B. Interlacing trace
blocks and environments not only uses one stack insie&d
of two, but it alsc provides an implicit record of when
each +trace entry was crcated, relative to the
activation of axjiomse The backtracking routiné
processes only ithe trace entries whose addresses are
greater than the address of the failure environment,
since these entries were created after the failure

environmente. The address of the top of the most recent



trace block is malntained in register RTRACE.

Each identifier used in the active workspace
({either as an atom or us‘a skeleton identifier) is
entered in the symboi table when the iaentifier is
first encounterede. The symwol table entry for an
identifier is called a string descriptor and contains
the value of the identifier, as well as the length of-
the value. After a string descriptor has been crcated
for a given identifier, all subsequent refereﬁces tc
the identifier are made via a pointer to the string
descriptors Consequently the values of two identifiers
are equal if and only if the string descriptor pointers
are equale

$¥hen an jidentifier is encountered in the input (or
created during execution using the STRING predicate)y a
scarch is made 1o see if a string descriptor exists for
the identifiere If the search fails then a new
descriptor is created.v This search—and—add procedure

is perforumed by the HASH routinee

- 180 -



The symbol table search is made using hash chainse
HASHHEAD is a vector ef lipnk entriess. The value of an
identifier is hashed (using the HASH macro) to give an
integer xo The 1link entry indicated by HASHHEAD(x) is
selected as the head of a chain of string descriptors
to be searcheds

Each string descriptor contains the ‘following
dataz

~ the value of the identifiers.

— the length of the valueos

-~ the attributes of the identifiere.

— a link entryes

An identifier can have any oif the following attributeé:

PREFIX - the identifier is declared as a
prefix operatore.

SUFFIX - the lidentifier is declaured as a
suffix operatores

LR - the identifier is declared as a left—to-
right infix operators

RL — the ijidentifier is declared as a right-—
to—-left infix operatuvf

SPECIAL - +the identifier consists of one or

two special characters and need not be
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separated from its operands by a blank
when used as a prefix, suffix or infix
operatores
For identifiers consisting of oneA special
charactery the SPECIAL attribute is sct when thé String
descriptor is constructed by the LASH voutiné.’ Thé
SPECIAL attribute is also set 1for an idént;fier
consisting of two special characters when an apefatdr
declaration is made for the identifiere The other fdﬁr
attributes are maintained through the addition and
deletion of axioms for the CP predicatee
A 1lipk entiry is a pair of the form (code,pointer).
The possible forms of this pair are: o
{ LAST,;-)
{ DIRECTypointer)
{ INDIRECT,ypointer)
If the code is LAST then this 1is the last enitry in tﬁe
chaine It the code is DIRECT then the pointer
addresses the next string descriptor entry in the
chaine 1f the cede is INDIRECT +then the pointer
addresses a predicate table entry for this string
descriptore The predicate table entry contains a link

entry which continues the hash chaine The link entry in
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the predicate entry <«an have the form (LASTy—) or
(DIRECTypointier)e

Each string descriptor can have any number of
corresponding predicate entriesy organized in a queues
Predicate entries“may be of three typess; namely a
system type, an axiom type or a routine typece The axiom
and routine types e.ch contain a number of arguments
field and a pointere The number of arguments field
indicates that the entry applies to the predicate with
the given lidentifier and the indicated number of
argumentse For an axiom type entry the pointer.
indicates the first entry in an axiom gqueues ¥For a
routine type entry the pointer indicates the routine
entry sequencees Predicate entries of the system type
are distinguished by & number of arpuments fiecld which
is negative. System type entries are used to record
operator declarations and file information assocciated

with the identifiere.

4.2 Storapge Management

The initialization routine acquires one large area
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from which all storage requirementis are satisfiede. The
two principal requirements for storage are for the

elobal area and the epnvironment stacke The environment

stack starts at the bottom of the acquired region and
groyvs upwardy while +the global area starts at the top
of the region and Zrows downwarde The main elements
allocated in the global area arez

(1) string déscriptors

{2) axiom entries

(3) axiom rou-.ines

The 1limit pointer for the environment stack is
maintained in ESTKEND» ESTKEND is always set to ke at
least one environment size below the actual limit since
the routine entry sequence saves several pointers in
the new environment before checking for spacee. Normally
ESTKEND is maintained well'below the bottom of the
zlobal arca to reserve space for the errocr handling
axiomsy which will be called if the environment stack
reaches ESTKEND. The following diagram shews the

various arease
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i glubal !
| Area |

——

| Reserved Arca fTor |
]  Error Recovery |

—_——— {———ES" KEND
]
| Free Area |
] |
- {——--—-RFREE
{ Environment 1
| Stack |

The top of +the environment étack is also used
temporarily for write entries(in TMPUT) and for parse
stack entries(in TMGET ). During uﬁification a
unification stack is created which starts at ESTKEND
and grows downwards Since siring descriptors can bé
allocated in the global area during parsing, RFREE is
temporarily set to ESTXEND when reading terms in order
to prevent string descriptors from overlaying the area

containing variable names and the input term skeletonse

4.10 Axiom Mapagement

As described earlier, axioms are stored as axiom

eniries which are queued from predicate entriese Each
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axiom entry contain. the following data:
-~ a link to the next entry or a "{aéf" £l-.gy
-~ the term word and ‘skeleton‘ descriptors
representing the axiomy
— a count of the number of value cells needed
for the axiom enviromnment,

— a "free link"e.

The Y"iree 1link! is used to maintain a special gueue of
deleted axiomwmse Wnen an axiom 1is deleted the space may
not be immediately freed since constructed terms in the
proof may reference the axiom or susterms of ite In
order to recover space from deleted axioms it is
necessary to defer the freeing of the axiom spaces  An
axiom entry is queued on a special deferred free gueue
when it is deleted. When a proof is completed and the
supervisor is about to read another goal or axiomy
entries on this qgueue are then transferred into the

Mreal® free gueues
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All axioms and terms in the system are read using
the same mechanismy, a stack driven parsere The parser
uses two separate stacks,y a token stack and a term
stacks The internal re¢presentation for the term being
parsed is constructed on the term stacke The term stack
can consegquently cqntain Zero or more skeleton
descriptorse The parse stack contains tolkens and is
used to control.the parsing processSes

The first step in reading a term is the
tokenization of the inpute The TXKGET routine is called
to return a token on the ton of the parse stackoe The
token returned is one of the following typess:

{identifier>,

<term>,

<comma?>,

{left parenthesis?>,

<right parenthesis>,

<end of term>.

The token of type <term> is returned for intezers and
variablese.

The parse stack entry describing the +token
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contains the following information:?
~ the token type as described above
— the token priority(initially sct to ’—1 by TKGET
and may be reset by THMCOET)

- The token values This is relevent for TEKM and

1D type tokens onlys The value is
represented by a term wordese An identifier is
represented Dby the term wvord for the

corresponding atome

The parsing is performed using av shift—reduce
alpgorithm(1)e. The TMGET routine is the parse driver
routines 11 calls TXGET 1o place a token on the stacky
and then performs any appropriate reductionse The
reductions which TMGET may perform correspond to the
following DBXNF rulese.

atom>::=<Xidentifier>

<left-to—right operator>1:=<ideptifier>

<right—to—left operator>i:=<identifier>

<prefix operator>z:=<identifier>

<suffix operator’>::=<{identifier>

{term>::=<atom>

The appropriate reduction (if any) is determined using
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a twe syabol look ahead and also examining' operator
declarationses The TMGET routine calls the RESOLVE
routine when other reductions may be requirede. RESOLVE
is called if the top of the parse stack is neither a
term nor an identifier.
The RESOLVE routine makes reductions corresponding
to the following BNF rules.
<term>::= ( <term> ) ]
<ske1eton>v
<{skeleton>::1= <identifier> { <argument list> ) |
<term> <infix operator> <term> j
<prefix operator> <term> |
{term> <suffix operator>
argument lisi>::= <term> !

argument list> , <term>

The RESCLVE routine determines the applicable
reduction ( it any) by examining the type and priority
of fhe top three stack entriese. WVhen a reduction
produces a skeletony RESOLVE builds an appropriate
skeleton descriptor on the term stacke The term word
for the descriptor is placed in the s tack entry

produced by the reductione
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4212 ¥riting of Ter. s

All terms and axioms are written using the same
mechanisme TMPUT is a stack—driven routine which writes
out terms using the current operateoer declarationss
Terms are written in a minimally parenthesized forme
Consider as an exampie the term .(A,(+(—(b,!(C)),D))
with the following operator declarations:

Oé(.,RL,IOO).

OP(—-4RL,150).

OP(+4RL,200).

OP( !y SUFFIX,250).
¥Ye begin by processing the outer skeletdn- This will be
written in the format ¥_, " yrere _ denotes a subtefm
whose format has not YyYet been determinede. The <first
argument of the outer skeleton is processed and the
output format is now "A._1, W¥e now process the fnyn
subterme. This subterm wili be written in infix
notatione To decide whether 1o parenthesize the subterm

we examine the left priority context and the right

priority contexts In this case the left priority
context 1is 100, the priority of the infix ".". in

general +the left priority context  of a subierm is
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defined as follows:

{1) I£f 1he subterm appears immediatelf to the
right of an infix operator then the left
priority context is the priority of that
inTix operatore.

(2) 1zt the subterm appears immediately to the
right of a prefix operator then the left
priority context is +the priority of t he
prefix operator.

{3) Otherwise the left priority context is 0.

Similarly we define the right priorily context of a

subterm as follows:

(1) 1f the subterm appears immediately to the left
of an infix operator then the right priority
cocntext is the priority of the infix
operatore.

{(2) If the subterm appears immediately to the left
of a suffix operator the the right priority
context is the priority of the sulifix
operatore.

(3) Otherwise the right priority context is Oe.
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In this example, the right priority context oif the uH+#
subpterm is O Since the priority of the iniix W+9 jg

greater than both the right and left priority contexts,

this subterm need not be parenthesizede Thus the
output will have the format A._*%+_" and we next process
the "—" subtermes

This subterm has a left priority context of 100
and a right priority context of 200. Since the infix
-1 has a priority of 130y which is less than 200, we

must parenthesize this subterme The output now has

format MAL(_—_)+_" and we next process the first-
argument of the 9-9 which is an atome This Zives an
cutput format of MAJ(B—_)+_"., Wc¢ next process the
"I(C)I" subterms The "IM" js a suffix operatore. To

determine whether to parenthesize a term in suffix
format, it 1is necessary to examine only the left
priority contexte In this ~case the left priority
context is 150 and uv has priority 280, so no
parentheses are reguirede The output format is now

BA.(B—_t)+_#, When the two remaining subterms are

processed we have the final output: M"A{(3-Ct!)+D',
This exanple demonstrates the basis of the

"minimal parenthesis" algorithm developed for this
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implementatione Prefix subterms were not discussed but
they are treated analegously to suffix subteras: A
subterm in prefix format needs to be parenthesized if
the right priority context is greater than the priority
of the prefix operatore.

This basic method is refined 1in order +to handle
left—-to—right and right—to—-left infix operatorse.
Firstly all the operator priorities are hultiplied by
four so that any two distinct priorities differ by at
least foure. For infix operators two priorities are
created: a right priority and a left priorityes.
Intuitively, the left priority is the priority visible
from the left and the right priority is the priority
visible from the righte. Thus, in comparing the
priorities of two infix operators to decide on
parenthesizing, the left priority of the right one is
compared with the right priority of the lefte. For bocth
right—to—-left and left—to—right operators the left
priority is thc same as the prioritye For a right—to-
left operator the right priority is one less than the
prioritye. For a left—to-right operator the right
priority is one more than the prioritye. This

refinement for infix operators extenes the basic method

- 113 -



fto handle 1eft~to~rigbt‘and right—to—left ' onpaerators
ccrerectlyy, when two adjacent infix operators have equal
prioritye.

The term writing routine ix effectively a stack-
driven tree traversal prograne The stack consists of
zero er more write entriess Each write entry
represents a subterm of the original term (or
egquivalently a node in the tree re¢presentation of the
term)e. Each entry contains the fotfowing fields:

- the.substitution environment of the subterm

— a pointer to the current. argumeni in the
argument Llist ef the subterm skeleton
descriptor

— a count of the number of argumenits which
remain to be processed in this subterm

- the left priority context

- the right priority context

- a flag indicating whether or not the
subterm is parenthesized

-~ flags indicating if the subterm is being
written in infix, prefix, suffix or

basic skeleton notation
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5 Design Degisions
S+1 Introduction

This section describes many of the more
significant design decisions made in implementing the
systeme An attempt is made to outline the motivations
for the various decisions and “1he alternatives that
were considerede The features affected by the design

decisions fall into two groupss Languagie features are

readily visible to the user of the systeme Internal
features are not readily visible but have implications
regarding efficiency and ease of implementatione The

major features of both types are discussed in t he

following sectionse

S5e2 Infix, Prefix and Suffix Operators

It is clear from experience with PROLOG that the
ability to declare operators as infix or prefix is very
usefule. This feature is retained in an essentially

unaltered forme A single operator may have both a
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prefix and an infix declarations This dual dectaration
is allowed Dbecause of its obvious applic#tion for
operators such as "+ gnd "-", The "<-" gperator is
also used in both prgfix and infix forms to represent
goals and axioms respectivelje

In some situations suffix operators allow a more
natural notatione Consequently suffix declaractions are
also .supported. in order to prevent ambigous
representations and to simplify the parsiﬁg of terms
the restriction is imposed that a suffix operator may
not simultaneouély be declared as infix or prefixe

To provide a more flexible user. interface,
operater declarations may be acceésed, added or deleoted

Is

by manimsulating the OP built—in predicatce

53 The Representation of Terms

A flexible form of input for terms is provideds. A
term may span several input lines or several terms may
be input con one linece Since infix operators are
allowed it is necessary to indicate the end of an input

term by using some sort of delimiters The end—of—-term
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delimiter is chosen to be "', The character ".! askthe
last character i an inpuit line is treated AS an nd-—
of—-terme The¢ character YY" followed by'a blank marks
the end of a term, whgrever it oncurs in a linee. This
imposes restirictions on the use of M",M as an operators:
it may not be the last character on a line and may not
be followed by a blanks Alternatively a spec:al symbol
could have been reserved as the end—of—term delimiter
and disallowed as an cgperatore The obvibus‘ choice for
such a special character was %3, following its use in
other languagesy but this would have disallowed the use
of M";" as an operatore

A variable is represented by an asterisk fellowed
by the variable name o The use of anonymous variables
{iece variables with no name) is introduced to.
abbreviate the notation in certain cases. The variable
name may be any of a segquence of letters and digitse
When a term is written the Qariables in the term are
given names according to their‘canunical numbers {(is.ce
¥1,%2 etce)s This gives the motivation for allowing
variable names consisting solely of digitse

An atom or identifier is represented by & seyuence

of characters enclosed in apostrophese ln certain cases
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the enclosing apostrophes may be omittede The use of
apostrephes allows the use of punctuation characters
and special characters in atonms and identifierss
Obviously, the apostrophes are made optional to yield a
briefer and more readéble syntaxXes

Since a large number of prlnteré and interactive
terminals are unable to deal with lower cas:: 1etteps,
lower case letters are not allowed in unqguoted
identiiiers. For this same reason the default is for
all input from the terminal to be translated to upmer
casece To maintain flexibility, a facility is provided
to avoid the translation (isece the CONTROL predicate

with the key LOWER).

5¢4 The Representation of Axioms and Goals

In the original ﬁarseille version of PROLOG, an
axiom is represented as a sequence of signed
literals(ecege +¥P-Q~R)e There are several disadvantages
to this notatione Firstly the "+% and "-" signs give a
deceptive indication of generality, but add noething to

the power of the languagee The inference rules used by
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the PRCLOG proof procedure can be explained . using the
si-pler and nore natural rules of implication rather
than the more general rules of resolutione

In this implementation an s8xiom is represented as
an inplication(eege P<-QER). This representation hus

the advantage that an axiom can now be interpreted in

an obvious way as a term where <= and ME" are
declared as infix operators ot the appropriate
prioritiese Hepresenting an axiomn as a term of a

certain form yields several benefits:

(a) Axioms and terms can now be‘read and written
using a common mechanisme

(b)) Axioms can be easily manipulated without
resorting to a special list formate.

(c) Representations for alternation and negation
can now be easily includedes £ the
identifier -1t is declared as a prefix
omserator of appropriate priority then negated
literals can be used.

eege AL—BE-C.
~C<—ESF,
(d) Infixy prefix and suifix forms of predicates

can be used since axioms are Jjust special



cases of termse.
eege 1f LIKES is declared as infix then
A LIKES B is a valid axiome
When an axiom is invoked in a proofy the right

hand side or body
proof. Because of
goal and an axiom
bothe

Examples of goals

The operator 1"<-="

also a
advantage that
distinguished

Consequently

inpute

terme

without

they may

of the axiom becomes a subgoal in the

the similarity of function between a

body, a similar format is chosen for

ares
<-A.
L-F(*X)EGo

is declared as prefix so that a goal

This notation has the further

goals and axioms are nov easily

depending on contexto,

be Treely interspersed in the

S5 Buili-in Predicates

This

predicates of the

implementation includes some

of the built—in

original PROLOG in a modified forme
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Other of the original predicates are omitted entirely
and some necw built—in predicates are includedes These
changes were made in an attempt to ‘achieve t he
following goals:

(a) a more powerful and uniform system for
manipulating axioms and operator
declaratioﬁs. An attempt was made to make the
language merec Uself-consciousy that isy to
provide the ability to access and change all
aspects of the PROLOG environment from PROLOG
programss

(b) improved access to external filese Any number
of files may ©be accessed by namee Thé
original PROLOG system provided a single
fixed input fileo

{c) more ‘'meta" facilitiese In particular the
ability to determine the type of a term (isce
variable, skeleton, atom or integer)e

(d) more general facilities for manipultating
PROLOG workspacese The original PROLOG
provided a simple SAVE function enlye The
extensive workspace facilities described are

based on similar funtions provided by the APL
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languagae.

(e) impreved facilities for testing and error
recoverys The ERROR predicate lé provided to
allow user controlled display of information
at the point of an errore This feature is
similar to the CN ERROR facility of the PL/I

languages

S«6 Predicates: Skeletons and Their Arity

A skeleton is determined Dy a skeleton identifier

and a number of argumentse The gquestion arises: Should
a fixed nunber of arzuments be associated with each
identifier? More specificallys Is it appropriate to use
the skeletons F(1,2) and F(1,2,3) in the same prooif?
Placing restrictions on the number of arguments would
have the advantage of detecting certain user errors
(such as typing F(1e2:3.4) instead of F{1:2,354))e
However the restrictions would preclude the natural use
of M+4 and "-" as both unary and binary operatorss
Alsoy it is difficult te determine the "correct" number

of arguments for an identifier without introducing sSome
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form of decluratlors. Primarily fer these reasons it
was decided not to associate a speclfié ﬂumber' of
arguments with a skeleton identifiere. A similar
discussion applies to.the‘use of a predicate identifier
with various numbers of arguments. The simplicity and
usefulness of "optltional arguments™ is demonsirated by
many of the built—-in predicates provided. in this
implementations The reduced facility for error
detection is alleviated by the provision 6f the NOAX

option in the CONTROL built—in predicatee.

57 Internal Features

The design of internal features is jnfluenced by
two considerations: efficiency and ease of
implementatione The efficient and elegant structure
sharing metﬁod for representing terms, used in the
Marseille implementations is empleyed with no major
changes:. This represeptatlon also allows the use of a
stack for axiom environmentse

An area, called the’globul arcay is also requirea

for permanent data items, such as aXioms and siring
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descriptorses The g'obal area and the environmeant stack
are allocated at opposite ends of a common area and
grow towards each othero

Certain substitutions must be recorded as they are
made so that they may be "undone" by backtrackings. To
this end it is necessary to save the address of each
value cell in which a substitution was made. Thus we
nec& to accumulate a list of value cell addresses or
trace entriese. When backtracking is perfdrmed it is
necessary to determine all trace entries which have
been c¢created since the creation of a given axiom
environmente To provide a record of the time of
creation of trace entries versus axiom environments and
to simplify storage managementy it was decided to place
the trace entries on the environment stacke

An early decision was made to support a mixture of
compiled and interpreted axiomse It was decided that
this facility merged the best features of convenient
program development and efficient executione The
provision of this mixed feature inyluenced the format
chosen for axiom environmentses

For an axiom interpreter it is necessary to record

in the environment, the next axiom alternative



available(in case of Tailure) and the remaining goal
conjunction of the current axiom (in case éf success )e
Each of these two items can be recorded in‘a three byte
address.. For a compiled routine it is necessary te
record the success return address ‘and  the failure
return addresse These too can each be recorded in a
three byte addresse To maintain reasonanle space
efficiency it was decided to use the same two words in
the environment to record the two items for the
interpreter and fhe two items for compiled codes The
high crder byte of each word would contain a code
indicating the type (compiled or interpreted)e. A code
is used in both words to srovide increased flexibiitity:
when the interpreter processes the last literal of the
axlom bodysy it flags the success pointer with the
compiled® code and sets the success pointer to a
routine which immediately "succeeds!.,

Backtracking could have been handled in any of
several wayses The current environment could always
contain a pointer to the previous environment on the
stacke Then backtracking could trace back through the
environments on the stack until an environment with a

remaining alternative was founde. It is more efficient



to have the current environment contain a pointer to
the most recent environment with a femaining
alternative, so that the appropriate environment can be
located in a single stepe Te facilitate this, a
register pointing to fhe current failure environment is
maintaineds This register also allows a more efficient
handling of trace entricese 1t is necessary. to trace
only those assignments into value cells below the
current failure environment since backtracking will
erase the failure

An atom is represented by the address of a symbol
table entrye. The alternative of representing each atom
By a separate string was rejectede. This alternative
would necessitate time—consuming comparison of strings
during unifications Hashing seemed to be the only
reasonable access method for a symbol tables Since the
number of atoms in use in different PRCLOG workspaces
varies a great deal, the method of hashing into a
symbol table of fixed size was rejectedes The use of
hash chains was deemed the best choices To facilitate
parsing of input and the implementation of the STRING
built-in rredicate, the maximum length for an

identifier was set at 256 characterse.
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The memory architecture of the /370 was a strong
influence in determining the representation for toermSe
The storing of a twenty—four bit address in a thirty-
two bit word allow% efficient prepresentation of a term
using an eight bit code and a twenty—four bit address
or numbers The selection of the <¢odes for the four
types of terms was also based on efficiency
considerationse The efficiency of the defeferencing oX
terms is very important and depends on the rapid
recognition of variablewus Consequently the type code to
represent a variable was chosen sO that the word
representing a variable would be negative and the word
representing any other type of term would be positive.

Since skeletons vary in size, it seemed necessary
t0o represent a skeleton term by a pointer to some sort
of skeleton descriptore This descriptor would need to
contain the following informajlon:

—the skeleton name

—the number of argumcnts

—the arguments
The arguments can each be represented by a single term
wbrd. The skeleton name can be rgpresented by a twenty—

four bit pointer to a symbol table entrye. it is
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desirable to make the representation for a skeleton an
integral number of words in sizee. Consequently the
choices open are to restrict i1he maximum number of
arguments to 255 and record the value in eight bits or
to reserve an extéa word for the number of argumentse.
The limit of 255 arguments seemed reasonable, so0 that
alternative was chosene
In a PROLOG workspace, various pieces = of

information are associated with identiriersf The
information which can Dbe stored for an identifier can
include all or any of the following:

- operator declarations

- axioms

- routines (for built—in predicates and

conpiled axioms)
~ file information
— information for the CONTROL built—in
predicate

It must be possible to access this information from the
string descriptor for the identifiere. Conseguently it
was decided to provide for the chaining of predicate
entries from string descriptorse Instead of reserving

space in each string descriptor for a pointer to a
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predicate entry chain, the technidue of indirect

pointers described in 4.8 S{vmbol Table Orgapnizaticn was

usede

1t was anticipated that compiled code routines
would need to access predicate entries directly to
obtain the addresses of other routinese. Accordingly,
the predicate entries are organized in the predicate
tablees The entries may be accessed uslﬁg an offset
from the table Dbasee. In normal execution a fixed
register is reserved L£or the predicate table bases 1t
is assumed that the maximunm predicaté table size will
be restricted to 4096 bytes, in keeping with the limit
on base—displacement addressing on the /370. This limit
is not yet imposed since the compiler has not been
implementede.

It was decided to provide the implementation with
a faciliity <for programmable error recoverye. This
required the reservation of space on the stack for the
execution of user written error axioms in the event of
a stack overflowe Consequently a reserved space system
is implemented to provide space for stack growth if an

overflow is detectede.



6 Future Considerations fur PROLOCG

621 Introduction

This implementation includes numerous significant
changes and extensions to the original PROLOG languasgee.
PROLOG is a relatively’ new language and conseguently
there is & wealth of further extonsicns which may be
considerede. Some of the possible extensions are small
in scope and can be implemented with relatively little
efforte Others represent major changes to the power of
the language . ahd consequently ma jor efforts in
implementations. The following sections outiine some

possible extensionse

H£:2 More Built-in Predicates

The PROLOG language can alwayvs be extended by
adding more built—in predicatess There is a tradeoff in
adding thesey since eﬁery addition makes the language
more difficult to learn and increases the size and

conplexity of the systens With these considerations in
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mind,

the following praedicates are suggested.

PROVABLE(*X)

This predicate succeeds if some instance of *X is
provable from“the axiomss This predicate could be
implemented by proving *X in the usual manner and
then erasing th  proof of *X and any substitutions
made during the proofe. This predicate can be
defined in the existing implementation wusing the
meta variable facility and the slashe The
provision of this and some of the following built-
in predicates weuld standardize the predicate
names used for several common functionse. This
standardization would also allow a compiler to
recognize certain standard predicates with defined

characteristics and to optimize accordinglye.

UNPROVABLE( *X)

This predicate succeeds if no instance of x*X is
provable from the axiomse Note that no
instantiation is performedas This predicate can be
defined in the existing imple&entation using the

meta variable facility and the slashe PROVABLE



could be defined by:

PROVABLE{ *X) <-~ UNPROVABLE{ UNPROVABLE(*X)).

UNIFY(#X,%Y )
This predicate succeeds if *X and *Y are
unifiable. If the predicate succeeds then *X and
¥Y are unifiede This predicate could be defined in

the existing system using the axiom UNIFY(%X,%X)e

UNIFIABLE( %X,%*Y)
This predicate succeeds if *¥ and Y are

unifiables No unification is perfiormeds

DUPLICATE( *Xy%XY)

This predicate succeeds if *Y can be unified with
a copy of *¥Xe More specifically, a copy of the
term bound to %X is created with the variables
renancde DUPLICATE is closely related to the above
predicatese.

PROVABLE(*X) can be defined by:

PROVABLE( %X ) <—DUPLICATE( ®X,%Y)E%Y,
UNIFIADLE(*X %Y ) can Dbe defined Dby:z

UNIFIABLE( %X ,%Y) <— DUPLICATE(%X,*Z) &
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DUPLICATE(*Y,%Z).

INSTANCE(*X)

This predicate is proposad as

means of

instantiating all variables in the term *Xs The

features appropriate for a predicate of this sort

are not readily apparent. One suggestion is that

in this form sthe variables are unified with the

integers 13233y etcey to provide a Y“"most specific

instance! of the terme A more general

be INSTANCE(*X4*Y) where the term

model for the instantiation of +the

form might

XY is used as a

variables in

the term ¥*Xe. For instance, if *XY is bound to V(%)

then the variables in *X would be instantiated te

viil), Vv(2), etce The instance predicate would be

useful in a compiler for compiling

PROLOG axioms

directly into codee It could also be used as a

general Ymeta® facility for termse

For example,

it could be used to replace the MKGROUND predicate

in WARPLAN(9).

CONDENSE

This predicate could be lmplemeﬁted as a predicate
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with a pragmatic slgnificance, but no =memantic
significance. Specifirally, it would recover €nace
on the environment stack by causing a portion of
the proof to be condenseds The desirability of
such a feature is clearly dependent on +the

implementatione.

COUNT

This predicate is proposed as a means of providing
loop controle. It is suggested that four “eorms of

this predicate be provided»
COUNT - this predicate succeeds when first
invoked and when backtracked toe
Thus it can be used to perform
loopinge The loop can only be
terminated through the use of RERETRY

or /o

COUNT( *X) - same as for COUNT but when first
invoked *X is instantiated to 1 and
backtiracking causes %X to be

instantiated to 2 then 3 etce
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COUNT(*¥X,% i) — same as Tfor COUNT(*X) but when
first invoked, YA igs inétantiated
to %N (%N must be bound to an
integer)e. Backtracking causes *X

to e incremented as befores -

COUNT( *X 3 ¥Ny*M) = same as for COUNT{ %*X,*N)
but backtracking will only succeed
while *X is less than 6r équal to
*Me M must Dbe Dbound to an

integere

SUBTERM( *SKELy*INDEX ¢ *RESULT)
This predicate can be used to select the argument
of a skeleton with an appropriate indexe For
example the call <—SUB'1;ERN( F(1,8,27,64)y3,%CUBE)
will succeed and will set *CUBE to 27. Similarly
the call <-SUBTERM(F(1,8,27,64),%1,64) will set *I
to 4 (the index of the (first argument which is

unifiable with 64).

CODEAX( *X)

Thiis predicate succeeds if there is an axiem in
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coded form (ie:ecompiled) with +the same predicate
name and number oi arguments as the term‘*X. This
is intended for user written theorem. preversy to
ael’ow them full access to the PROLOG axioms and

coded axiomsSe

CODEAXN( %X, %N)
This predicate succeeds if there is an axiom in
coded form (iee compiled) with the prédicate name
given by aitom %X and with the number oi arguments
given by integer %*No. This predicate is incluged

for uniformity with the AX and AXY) predicatess

Built—-in predicates might also be useful in +the
following areas

-~ adding and deleting compiled code axious

- more powerful library predicates

- interfacing to subroutines in other Languages

- providing special tracing and debugging rfeatures

— more general file capabilities
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€3 More Realistic I .ta Base Facilities

Resolution logic has been shown to combine

sinplicity and power of expression when used as a data

base definition/query langua:ee. In the practical sense
though,s this and previous PROLOG implementations have
not provided a realistic means for manipulati:ng a data
base of significant size. To extend the implementation
to include this facility, several features need to be
considereds First it will be necessary 1o dev:lop a
technigue for storing axioms on an external storace
mediume In this implementation, the actual maximum
size for the axioms and work areas of +the active
workspace is 16 megabytes, though the practical maximum
is cohsiderahly lowere If some axioms are to be stored
Minternally" and others %externally' then a criterion
must be established to determine the storage mode for a
xiven axiome This could either be determined
automatically by the system or specified by the usere.
For instance a MODE built—-in predicate could be
provided to allow the user 1o specify an "“internal% or
lexternal¥ mode for any predicate name e Another

feature which is desirable from an efficiency point of
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view is the provision of "unordered" axio.asse For
example, consider a data base consisting entirel. of
axioms of the form NAME( xxxx) where xXxxxX is an atoms
To determine if an atom "is a NAMEY" we do not want to
search through all the "NAMESY., Clearly a hashing
technique is desirablee. This sort of technique is
easiest if we do not need to remember the original
order of the NAME axiomss It might be desirable to have
a MODE predicate which allows the user to define an

Hordered" or Yunordered" mode for any predicate names

Numerous other questions need to be resolved in
order to provide an efficient and elegant data bhase

system within PROLOGe 64 Real Arithmetic

Arithmetic values in this implementation are
restricted to integerss In many cases real arithmetic
would also be usefule. To include real arithmeticy
several decisions must be mades The syntactic
representation for real constants must be selecteds
The unification techniqgue for reals must also be

determineds The problem in this area is the means for
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e
e

comparing realss since strict equality probably
inadequate due to roundoif errors.s. The built—in
predicates would also have to be modi[ied‘and extended
in order to provide the ©basic arithmetic operaticnse. A
facility for formatting output may also be requireds.
Support for real arithmetic does not appear to be
easy to prcvidce It may be that the added complexity

does not warrant the effort required for

implementations

65 A More Sophisticated Proof Procedure

The power of PROLGG could Dbhe extended by
U"improving! the proof procedurces The danger is that
more elaborate proof procedures incur greater overhead
and require more complex data structurese. Such changes
might erode the very advantages of PROL®G as an
efficient (and restrictive) thecorem provers

Numerous avenues remain to be explored in this
arcas Extensions to provide 'pbottom up" and "breadth

firsth facilities neced to be investigated furthere
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626 Higher Crder Facilities
This implementation can be used to "wmimic" second
predicateses

order features by using <certaii built—in

The provision of any true second order Tacilities needs

t0o be investigatedes
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1 Conclusions

The preceding sections have describéd the main
feature:: of this implementation of PROLOG. The
implementation has been completed as described except
for the built—in workspace predicates described in 3.5

¥orkspace Predicatess This implementation was

devecloped on an IBM 370/158 using VM/CMS3e Scme sample
programs were used to compare the efficiency of the new
implementation ahd ihe original implementation from
Marseillee. The programs chosen involve the WwWARPLAN
system for plan generation(8)s The first set of times
compares the time reqgquired to load the axioms for the

WARPLAN sys teme The next two sets of times give the

times required to solve the problems
<-PLANS(ON(AyBJ)y START) and <—PLANS(ON(A,D)¢START)

respectively, using the axioms for the blocks world as
described in (9). The comparison is based on seconds

of virtual central processor time on a 370/158.
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Mars+*ille Interpreter New Interpretcoer

|
Load WARPLAN | 5862 ] «40

I- e b
Problem 1 | 272 | e 16

N — |- -
Problem 2 ' 3097 l 24

These times give an approximate measure o

performnancees They show an improvement factor

T relative

o7 over 15

for execution and over 100 for the loading of axioms.

No cowmparison of the space efficiency o
implementations has been attempted. No

differences are anticipated in this areae

Other more subjective evaluations remain to

i the

two

sigrificant

be

mades These evaluations will be made by the final users

of the systeme

It is hoped that this implementa

tion

will

stimulate the development of +the PROLOG language and

will provide a base for future enhancementss
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