
An Implementation 0£ PROLOG

by

Grant Maxwell Roberts

A thesis

presented �o the University of Waterloo

in partial £ulfillment of the

requirements for the degree 0£

Master 0£ Mathema�ics

in

Computer Science

Waterloo, Ontario, 1977

© Grant Roberts 1977

I hereby

thesis.

declare that I am the sole author of this

I author1ze the U�lvcrsity 0£ �aterloo to lend this

thesis to other lnstl-tutions or l u<li v l duals .for the

purpose of scholarly research.

I :further

reproduce

authorize

this thesis

the Unlversity o.1:

by photocopying

Waterloo to

or

means, ln total or in part, at the request

by other

of other

institutions or

scholarly research.

individuals

- 11 -

for the purpose o.f

1 Introduction 1

2 The Language 3

2.1 Introduction -------------------�--��----3

2.2 Elementary Syntax --------------�----------5

2.3 PROLOG Execution and Backtracking ��---�--9

2.4 The Syntax in Detail --�---------------�--27

3 Built-lo Predicates 41

3.1 Introduction �-�--------------�----------41

3.2 Structuru.l Predicates ------------------43

3.3 Input/Output Predicates -----�-------------47

3.4 Arithmetlc Predlcates ---------------------SO

.3.5 Workspace Predicates --------------------51

3.6 Database Predicates ---------�---�-�-�--54

3.7 Execution Control Predicates -------�------66

3.8 Miscellaneous Predicates ------�-------�--72

4 The Implementation 75

4.1 Introduction ----------------------------75

4.2 Representation of Input Term� and Axioms ---77

- iv -

4.3 Substltut!tn and Constructed Terms ---------81

4-e 4 Unl:f icat ion -------------------------"·----84

4.5 Axiom Environments -----------------------89

4.E The Main Interpreter Routine ---�-�---�--93

4.7 Backtracking and Trace Entries -�----�----95

4.8 Symbol Table Organization -----------------100

4.9 Storage Management --------�---�--�------103

4 .. 10 Axiom Management -------· -----------------105

4.11 Reading of Terms -------------------------107

4.12 Writing of Terms -----�-----------�------110

5 Design Decisions 115

5.1 In-troduction ---------------------------115

5.2 In.fix, Pre"fix and Su:f:flx Operators --------115

5.3 The Representation o:f Terms -------------�-116

5.4 The Representation o.f Axioms and Goals -----118

5.5 Built-In Predicates ----------------�------120

5.5 Predicates, Skeletons and Their Arlty ------122

5.6 Internal Features -------------�· --�---�--123

6 Future Considerations 1or PROLOG 130

6.1 Introduction -----------------------------130

6.2 More Built-in Predlcates--------------------lJO

- V -

6.3 Mo re Realhd.tc Data Base Ft1.ci ll ties ---·------137

6.4 Real Arithme�ic --�---------�-----�------138

6.5 A More Sophisticated Proof Procedure -------139

6.(. Hlgher Order. Facilities ------------------140

7 Conclusions 141

8 Bibliography 143

- vi -

.1. In.! .c.rui 1.u.� . .!.l.2n

Research in artificial intelligence has spurred

the development o.f numerous programming languages

better oriented to expressing and solving the problems

whlch arise .ln this field. One o:f these languages is

PIWLOG. The acronym PROLOG is derived from �·ROgramming

in LOGlc and emphasizes the derivation or the languape

from predicate

represents the

resolution logic

logic. The development

discovery of a means

as a practical programming

OI PROLOG

.IO" using

language

xor problem solving.

The se.man tics of PROLOG are essentia�ly those of

first order resolution loglc(8,4}. Consequently

and compact

-the

language is both well defined in

dei:inition. Mo.re Important though, the language is .a

powerful. tool £or problem solving, as has been

demonstrated .in the deve'lopment o:f several problem

solving systems, among them a geometry theorem

prover{3), natural language understanding systems() and

a program 1or automatic plan generatlon(9).

The original PROLOG lanµ;uage and an interpreter

for it were developed at the University o1 Marseille by

- 1 -

Colmeraur and his colieagues. The u.uthor has developed

an implementation in an attempt 1:o provide a more

of PHO.LOG. The principal goat o:f this usable version

implementation was to reduce the execution time o:t

PROLOG programs. Another imp ortant aim was to mal<.e the

PROLOG system more convenient to use by al-tering the

syntax and prov.idlng improved system rune t ions,

particularly £or error recovery.

Thls document is intended to serve a dual purpose.

It provides

describes

language.

a user's

the

The

design

user 1

manual :for ·the system.

and implementation

manua1 ls contained in

Sections

2.3 inclusive describe the basic .:features

language. Section 2.4 is a detailed re1erence

It also

o:f the

,2 The

2.1 to

o:f the

:for the

language syntax. A complete description 0£ the buil.t-

in predicates ls provided in 3 Built-in Predicates.

The data structures and algorithms o� the system

are described ln The various

decisions and tradeof':fs made in the design of the

languRge an<l ln its implementation are discussed in ;;i_

Possible future modl�lcations are

discussed in 6 Fu.:tYre �nsideratlon§ .f.2..r: Pi<OLOG.!..

- 2 -

2 l !.n..ir.Q.d�.1l..2n

The semantics o.:f PROLOG is essentially that

resolution logic. llut resolution logic itself doe� not

constitute a programming language. Statements in

resolution logic are descr.lptive. They have the :form "x

ls true u . In conventional programming langua�es the

statements are imperative. They haV(;? the f.orm Hperiorm

action x11. To derive a programming language :from

resolution logic we add imperative statements ox the

:f".:'!"m "prove that x ls true", A statement o:f this form

is cal�ed a goal statement. A PROLOG program consists

o:f a set of goal statements and a set o:f axioms.· The

axloms are descriptive, constituting a list o:f :facts.

Each goal sta t eme n-t is imperative and requests that

axioms be used ln an attempt to prove a certain fact.

To the passive language o:f axioms we have added

the notion o:f goals to yield a language 01 actiont a

programming language. This lunguage now allows us to

request the construction o:f a proo£. But how will the

attempt at a proof proceed? The proof procedure :for

- 3 -

PROLOG uses resolutJon in a simple depth 1lrst, left to

right search strateg;y. This proof' procedure is not

complete. Because o� the depth :first strategy a proo:f

may not be :found even one exists in the search

space. The proo:f procedure may :1".ol low an in:finite

branch in the search tree and never ex.amine another

branch which could yield a sat 1 sf a c to ry pro o · � • U owe v er

i:f the proof'. procedure terminates we know that it has

found the right answer. l:f it terminates wlth success

then a proof exists. It it terminates with 1ailu�e then

no proof exist s ln the seurch space.

This simple search strategy may seem

unsatis.factory since it yields an Incomplete prooI

procedure, hut it has numerous advantages over mo.re

general strategies. It can be implemented in a manner

which is more ef£icient ln the use o:f space than

current breadth first search methods. The simplicity of

the PROLOG search strategy makes lt easy -for the

programmer to unde.rstand and control t he search. The

strict ordering of the search permits the use -0£ bullt­

ln predicates causing side effects(e.g. READ and WRITE)

with the knowledge that the side effects will occur in

a prescribed order. The prospect o1: output being

- 4 -

created in random ,rder does not see� very pleasant!

Thus, it is evident that the simple search straiegy

possesses s everal desirable chracterlstics. It ls also

possibl� to beg the question -Of search strategy by

stating that 11' anyone wants a general theorem prover

then PROLOG is a �ood language in which to program ltl

The possibility o:f dl:t:ferent search strategies :for

PlWLOG is discussed ln fl Future Considerations "f'o�

�ROLQQ.!.

An explanation o:f resolution logic in tl::rms of

classical logic is given in () . Programming using

resolution logic is discussed in (4).

This section introduces the syntax of PlWLOG

axioms and t:-,oals. A brie.f de sci p-t.i on o:f the basic

syntax is provided in preparation :for the description

of PROLOG execution in

A detalleu description of all the syntax rules is then

provided in 2.4 J:he S:.?::ntax l..n DetaJ.l•

The basic synto.ctlc unit in PROLOG is the ter.ill..!. A

- 5 -

..t�m may be:

(a) a constant

and digits.

basically any sequence o1 letcers

A constant may be an integer or

an atom. e.g. ABC and X2.

(b) a variable an asterisk .fol1owed hy a

sequence o:f letters and digits. e.g. t,cX and

*Al.

(c) a skeleton - a skeleton n�me and a list 0£ one

or more argument ·terms. The argument terms

are separated by commas and the i..ist is

enclosed in parentheses .. e.g. F{X2,*Y)

G(*B,A,F(3)).

The syntax can be described in BNP notation!

<term>::= <atom>

<integer>

<variable)

<skeleton>

(<term>)

<atom>::= <identi£ier>

<skeleton>::= <identifier> (<argument list

<term> <in11x operator> <term>

(prefix operator> <term>

<term> <suffix operator>

- 6 -

and

<infix operator>:.;= <ldenti:fier>

(prefix operator>::= <ldenti£ler>

<su1fix operator>::= <identifier>

<arcument list>::= <term>

<argu�ent llst> , <term>

<variable>:-:= >:c

<varLable) <letter>

<variable> <digit)

The rules involving operators describe an a ltE:..t"nat i ve

notation :for skeletons, to be described

A l�1Q£a� may be a skeleton or a constant. A Qredic�ig

ls the name associated with a literal. I:f the literal.

is a skeleton then the predicate is the skeleton name.

Otherwise

l.iteral ..

it is the constant associated with the

The general form of a PliOLOG axiom is!

<axiom head) <- <axiom body) .

The implication arrow, .u(-" ls read t1is implied by n.

The axiom head ls a. single literal. The axiom body ls a

conjunction of literals. A conjunction o± literals may

- 7 -

be a single literal or two or more llteralJ se�arated

by the "and" symbol.(&). An example of an axiom ls:

A <- B 6 C •

The head is A, the body is B S r. and the axiom is read

"A ls implied by B and C" or 11To prove A first prove 8 1

then prove c« . An axiom may have a null body, in which

case the implication is omitted and the axiom has the

:form!

<axiom head> .

An axiom with a null body is called a unit axiom. An

example is:

F(M).

Ti-.,ls is react tt F(M) ls true".

The general form of a PROLOG goal i s:

<- <goal conjunction>.

The goal conjunc-tion is a single literal

conjunction of liter�ls. Examples of goals are :

<-P.

<-Q(R) S F •

or a

Goal statcrnen-ts may be regarded as abbreviations ror

axioms o1 the form:

0 goal 11 <- (goal conjunction>

where 11 goal 11 is a distinguished literal which the

- 8 -

PROLOG theorem proV·'J:' attempts to 11 prove".

Fro1u the user point o:.f v.iew the PROLOG sy:.,tem

ac.cepts axioms and goals .1:rom the terminal. Axioms

which are entered are recorded £or later use in proofs.

An attempt is made to prove a goal statement as soon as

it ls entered.

In axioms and te�rns all variables are .1.SSUmE:�d -to

be universally quant1Licd. That ls, an axiom containing

variables is valid :for any 11 valuestt which the variables

may take on. A verbal

"FATHER(*X, *Y) <- SON(t�y, >.'(X} n

vePsion o.f the axiom

ls 11 For all values of X

and y, x is the �ather o:f y Lf y ls the son o.1: x" • The

substituting 0£ "va lues11 :for variables

discussed :further in the next section.

2.!.J. Execu.:t.i.2n a..nd llJ!cktrack.lng

wlll be

PROLOG execution is started by a goal statement. A

goa� statement is a request for a proo:f. The execution

o:f a PROLOG program is essentially the actions of an

elementary theorem prover attempting d proo�.

A series of diagrams may he used to describe the

- 9 -

p:ogress of a PROLvG proof. Each diagram, called an

.i.mnl..i.£.�1..Qn .i..cg_g_ , des c r i bes 1: he state of the �roo� at

a glven point ln time. An implication tree consists 0£

one or 1·0.re la.belled_ nodes. A-t the top o.f the diagram

other nodes is is a node labelled 11goal"• Each o:f the

labelled with a literal and ls joined to a parent node

lmmmediately above it. A node is called -the

its parcnte A node may be in any c�e o� three states:

{1) open: No attempt has been made to prove the

literal labelling the node.

children.

The node has no

(2) closed: The lite:ral labelling the node

been proven using a unit ax.iom :for

has

the

literal. The node is marked with an ll_xU to

distinguish .i-t from an open nodeio A closed

node has no children.

(3) active: The literal labelling the node is

being proven (or has been proven) using a

non-unit axiom. The node is labelled with the

literal. o1: the axiom head .. The children 0£.

the node are labelled with the litC'rals o:f

the axiom body. The left-to-right order of

the literals in the axiom body is preserved

- 10 -

in the diagram. The original goal statement

is treated as an a.xlom o:f the .form "goal <-

<izoal con�junction> 0
• Thus thu children o.:f the

goal node, are 1.abel.lect with the literals o:f

the goal conjunction.

Consider the 1ollowing axl-0ms and goal:

\(-B&C.

B.

c<-n.

D.

<-A.

The proo£ of this goal is represented by the following

�mpllcation tree:

goal

I \

This is all nodes

are either active or closed. The nodes labelled B and D

have been closed using axioms "B •" and un. n

- 11 -

respectively. The noue labelled A ls active and has

been proven using the axio,· "A<-BGC. 0
•

Consider the :following example 0£

goal statement:

A<-usc.

B<-DSF.

B(-EGF.

c<-G.

E(-G.

F<-H •

G.

H.

axi.oms and a

The initial state 0£ the proo£ is represented as:

The :first

giving!

goal

I
A

axiom

u;oal

I \
B C

:for A is selected, namely A<-BSC

- 12 -

The prover ulwuys works ln a dcpth-1irst Le�t-to-rlght

f'ashion. Conscqucn t ly the ·.1ex t lite ra. l -to be proven is

B. The axiom B<-DSF is selected:

goa·t

\

\

F

The prover then attempts to prove D. But ·there are no

axioms for D so the prover must backtrack. This

lnvolves backing up the proo.f and -trying o1: her

alternatives. A chQlc_g .Q..Ql.11..1 in the proof is a point

where an axiom was chosen to prove a literal and more

axioms remain to be tried. Backtracking involves

backing up the proo:f to the most recent choice point

and making a dif.ferent choice. The order in which the

axioms are chosen is not arb�trary. Axioms are always

selected in ihe order in which they appear in the

input. In this example B<-DSF will always be examined

before B<-ECF.

The 111 o st recent c ho ice point in the current proof

is the point where the axiom B<-D&F was selected. The

prooL ls hacked up to this point and the other axiom,

- 13 -

B(-ESF 1 is selected. The proof continues as shown

below:

goal
=> I

A

I \

D C

I \.

E F

t:!;Oa.l

=> I
A

I \

B C

I \
E F

I
G

goal

=> I
A

I \

B C

I \
E .F

J
G

X

goal

=> I
A

I \

B C

I \

E F

l I
G H

X

- 14 -

=>

=>

=>

The :final

E

I
G

X

E

J
G

E

I
G

X

goal

I
A

I \

B C

I \

F

I
H

X

goal

I
A

I \

B C

I �

F

I
H

goal

I
A

I \

B C

I \

F

I
H

X

proo:f

lrupllcatlon tree.

\

\

.

G

G

X

ls represented by a completed

OI course, if the proo£ IaiLs then

the 1.mplicatlon tree is never completed. 11, in this

example, we omit the axiom c<-G then the proo� attempt

will fail. Alternatively, 1£ we include another axiom

n<-D then the prover will attempt to construct

"infinite branch 11 or the implication .tree:

- 15 -

an

D

l
D

I
D

•• •

Eventually an error will occur when the proo:f stack

over:flows.

In the previous examples, none of the predicates

have arguments. For example, the predicate term

FATHER{JOHN,FRED) has two arguments, JOHN and FRED, and

can be used to .represent the statement 0 JOHN is the

FATHER c:f

variables.

FRED"• PROLOG

Fo.r

axioms can

example

al.so -contain

the axiom

SON(*X,*Y)(-FATHER{*Y,*X) represents the statement

is the son of y if y is the .:father o.f x"• Variables in

PHOLOG are assumed to be universally quantl�ied. That

ls,an axiom containlnR a variable is considered to be

"true n :for any 11 values 11 the variable may take. We will

make the idea of a variable

precise. In any axiom or

"taking a value" more

goal we can perform u.

replaces all occurrences

o.f a variable by u term. The repldcing term may be a

constant (such as ABC or 32 >, a skeleton(such as F(A)

or G{ *X,*Y)) or another variable. For example, 1:f we

- 16 -

substitute A for *X in G(*X,F(*Xl) then the .resul·t lng

term is G{A,F(A)). I£ we substitute F(*Y) for *X in

H(*X,*Y) then the result is H(F(*Y),*Y). When one or

more substitutions. are applied to a term (or axiom),

the result is called an instance o:.f. the term { o.r

axiom)• For example, SON(FRED,JOHN)(-FATHER(JOHN,FRED)

is an instance 0£ SON(*X,*Y)<-FATHER(*Y,*X) produced by

substituting FRED £or *X and JOHN £or *Y•

To illustrate substitution better, consider the

1ollowlng example:

SCN(*X,*Y)<-FATHER(*Y,*X).

FATHER(JOHN, FRED).

FATRER{JOHN,GEORGE).

FATHER{ AL, BE1<T),.

FATHER(GEORGE,AL).

We wish to solve the goal 11 <-SON(*Z,JOJIN)". By "solving

a goal" we mean :finding an instance of

we can prove. In this case we

the p;oal which

will prove

"SON(FRED,JCHN)"• The proof will be illustrated using

implication trees. The initial tree is:

- 17 -

goal

SON(*Z, JOHN)

Now we need to £ind an Instance 0£ an axiom which we

can use in the proof of SON(*Z,JOHN). The appropriate

instance ls Lormed from SON(*X,*Y)(-FATHER{*Y,*X) by

substitu�lng *Z £or *X and JOHN £or -*Y to give

SON(*Z,JOHN}<-FATllER{JOHN,*Z). The tree now ls:

goal

SON(*Z, JOHN)

r'ATHER(JOHN, *Z)

Note that we 1ound substitutions that made the head of

an axiom the same as the curren� subterm. The general

process of finding substitutions to make two terms the

same is called y.n.i..fl.&.A.!.ion.!.. Next we want to .r.ind an

axiom whose head w i l l y n i..fl'.: ,vi th FATHER { JOHN , * Z) • The

first axlom £or FATHER matches l-J: we substitute FHED

£or *Z• This gives the completed implication tree:

goal

S0N(FkED 1 J0HN)

FATHER(JOHN 1 FRED)

- 18 -

As a further example we will attempt to solve the

fJ:Oal <-FATHER{ JOHN,*X)SF·�TllElH *X,*Y). The proo:f

proceeds as follows:

�oal

I \

I \

I \

I \

I \.

FATHER(JOH.N,*X}

goal

I \

I \

I \

FATHER(*X, :t,cy)

I \

I \

FATllER(JOHN,FRED) FATHER(FRED,*Y)

X

The attempt to solve the subgoal FATHER(FRED,*Y) £ails

since this term will not un1£y with any o� the axiolfi

heads. Backtracking occurs and the proo� is backed up

�o the point where the FATUEH(JOHN,FRED) axiom was

activated. This axlom ls then deactivated and any

substitutions made when (or since) this axiom was

selected are uun<lonc"• This res�ores the proo£ to the

polnt:

- 19 -

[!oal

I \

I \

I \

I \

I \

FATHER(JOHN,*X) FATHER(*X,*Y)

The axiom FATHER(JOHN,GEORGE) is about to be selected

xor unl±icatlon wi�h FATllER(JOHN,*X). This unixication

succeeds giving:

goal

I \

I \

I \

I \

I \

FATHER(JOllN,GEORGE) FATHER(GEORGE,*Y)

X

The axioms �or FATHER are then selected ln turn £or

uni£ication with FATHER(GEORGE,*Y). The uni�ication

succeeds for the axiom FATHER(GEORGE,AL), yielding the

completed impllca�ion tree:

p;oal

I \

I \

I \

I \

I \

FATHER(JOUN,GEORGE) FATHER(GEORGE,AL)

X X

- 20 -

To illustrate the operation o:f PROLOG :L�rther, the

:fc<llowlnie: e.xumples demonstrate the rnanipulu.tlon o:f more

complex data structures. A set 0£ elements (similar to

a LISP list) is represented by

constructor S and an end marker NIL.

set with elements A,B and C ls

S(A,S(B,S(C,NJL))} o� as a diagram:

s

I \

s

NIL

The empty set is represented by NIL.

completely arbitrary and is chosen

only.

a term using a

For example, the

represented by

This noi.a-tion ls

:fo-r this e.:xample

A reasonable de:flnltion ior the nelement" relation

ls!

ELEMENT(*X,S{*Y,*Z))(-ELE�ENT(*X,*Z).

Verbally thebe axioms might be stated as 11 x is an

element of a set lf it ls the 1irst element in the set

or i:f lt ls an element of the set of elements Iollowing

the .flrst element•"• The goal

- 21 -

<-ELEMENT(C,S(A,S(B,S(C,S(D,NIL)))))

yields the following completed implication tree!

goal

I
ELEMENT(C 1 S(A,SCBtSCC,S{D,NIL)))))

ELENENT(C,S{B,S(C 1 S(D,NIL))))
I

ELEMENT(C,S(C,S(D,NIL)))

This syntax for representing sets ls clearly

cumbersome. To simplify this, infix notation may be

used(inLlx, prefix and suf£lx notation are explained

more :fully in 2.4 The �tax ln Detail). If we use a

n. 0 as the constructor and use int'ix notation th,,!n we

can denote the set with elements A,B and C by

A.B.C.NIL. The axioms for ELEMENT become:

ELEMENT(*X,*Y•*Z)<-ELEMENT(*X,*Z).

Suppose we want an axiom to write all the elements

of a set. The following axioms will suffice:

WRITE

LIST(*X•*Y)(-WRITE(*X)SLIST(*Y).

LIST(NlL).

ls a built-in predicate which <1lways

succeeds and has the side ef£ect �f displaying its

- 22 -

argument tc rm on t ;,-c term.inal. The term is written

£o1lowed by a period (the end of term delimlier). The

l!;oal. statement <-LIST{A.e.c.NIL)

completed implication tree is:

�oal

I
LIST(A.e.c.NIL)

I \

I \

WR!TE(A)

X

LIST(BQC.NIL)

I \

I \

WRITE(B)

X

LlST(CoN!L)

I \

I \

WRITE(C}

X

LI ST(NIL)

X

The output on the terminal ls:

n.

c.

succeeds. The

The .following axiom could also be used to list the

elements of a set on the �erminal!

LIST(*X•*Y)(-WRITE(*X)SFAIL.

LIST(*X•*Y)<-LIST{*Y).

LIST(NIL).

- 23 -

The ;::;oa l (-LIST(A.B.C.NIL) will 11st all elements of

the l nd.l ca t·t�d set and tl•2n succaed ... The completed

implication tree is:

goal

LIST(A •. B. c. NIL)

LIST(.u.c.NIL)

I
LIST(C.NIL)

LIST(NIL)

Suppose we wish to de�ine axioms for a predicate.

NOTEL{*X,*Y) which succeeds 11 *X is not an elemen� of

*Y• Reasonable axioms :for this predicate might be;

NOTEL(*X, NIL).

NOTEL(*X,*Y•*Z) <- NOTEQ(*X,*Y)6NOTEL{*X,*Z).

Verbally these axioms might be stated:

11 x is not an element o:f the empty set"•

"x ls not an element o.:f the set consisting o:f

y and some other elements if X is

not equal to y and X is not an

element

elements 11.

o:f

The axioms £or NOTEQ remain to be

- 24 -

the set o:f other

defined. The axioms

are:

NOTEO(*X,*X)<- / S FAIL.

NOTEQ(t.cX, *Y) •

These axioms make use of a special control 1eature, the

sla�h(/). To illustrate this feature we trace the

at�empt to prove the goal (-NOTEQ(A,A). Initially, we

have!

,:;o al

NOTEQ(A•A)

The £irst axiom is selected giving:

The

goal

NOTEQ(A,A)

I '

/ FAIL

slash predicate always succeeds. It ls used to

prevent certain alternatives .1:rom being considered in

the proo-f. In this case it prevents the second axiom

for NOTEQ £rom being considered. The implication tree

looks like:

- 25 -

goal

NOTEQ{A,A}
I \
/ FAIL

The FAIL predicate has no axioms and consequently it

:f'al ls. Since the remaining axlom 1or NOTEQ is not

considered, there are no remaining choice points and

�he entire proof fails.

Conversely the goal <-NOTEQ(A 1 B) succeeds. The

head of the axiom NOTEO{*X,*X) <- I & FAIL cannot be

unified with NOTEQ(A 1 B) so the next axiom ls selected.

The unification succeeds and the proof is complete.

The ac-tion o:f the slash predicate is described

more pre cl s el y: When the slash predicate is executed

it removes all cholce points in the proo-f, from the

point when the axiom containing the slash was selected

to the current point in �he proof.

The slash predicate ls utilized for two main

purposes. ·The :first ls to af:fect the meaning of an

axiom, o�tcn to handle negation as in NOTEQ above. The

second use ls to improve the e:t.riciency of a program by

preventing spurious choices from being considered. For

example, consider the following axiom used to test 11'.

- 26 -

�wo sets have one o� more common elements:

INTERSECT(*A,*B)(-ELEMENT(*X 1 *A) 6 ELEMENT(*X,�B}.

If a ca�l to the INTERSECT predicate succeeds and then

backtracking returns to -that point, then

axioms will cause other choices Lor *X to

the ELEMEN1'

be tried.

Normally the attempt to find a di1£erent common element

ls completely unnecessary since it has already been

proven that *A and *B intersect. This extra search can

be eliminated by

INTERSECT:

using the :following axlom .:for

INTERSECT(*A,*B)(-ELEMENT(*X,*A) G

S /a

ELEMENT{ ,:ex, * B)

A PROLOG program consists 0£ a sequence 0£ symbols

belonging to a symbol vocabulary. In th.is

implementation the EBCDIC character set is used. Any

one byte value is a valid symbol, even thou�h it may

not have an explicit EBCDIC graphic code. These symbols

are divided into fou r groups as follows:

- 27 -

(a) �£�1££§ - The upper case letters £rom A to z.

(b) J2.i.iti .1§ - The di g i t s .f r om O t o 9 •

(c) f.!.!.ru;.i.y£!..!l..2n .SJ[m.Qfil§ - This group consists of

the le:ft and right parentheses t the

comma, the apostrophe, the quote and the

end-of-term symbol(the perlod).

(d) S12e�l.a l SyrnLQ ls This grpup consists of all

symbols not in any 01'· the three

preceding categories.

The ::fundamental syntactic construct in PROLOG is

the term. As stated earlier, a term may be a variable,

a constant or a skeleton.

A Vi'H' iable

:followed by tlw

is represented by an asterisk(*},

variable name. The variable name ls a

sequence o� letters and dlgits. Thus *X, *A1B2C3, and

*37 are all variables. In addition a single asterisk is

a variable 0£ a special sort. It is called an anonymous

variable and has the special slgni£1cance that each

occurrence ls considered to repres��n t a distinct

var.lab le.

A constant ls a sequence o:f symbols enclosed in

apostrophes. The sequence represents the value o::f the

- 28 -

constant. Note that 11: the value c: 11 ta ins an

ar;.,strophc, then the apostrophe .. must. be duplicated.

Examples of constants are:

1 ABC 1

1 37+A) 1

I p It I

' t

The value of the third constant shown above consis�s 0£

the three symbols .right parenthesis, apostrophe and

comma, in that order. The value-of the last cons·tant

consists o:f no symbols. The apostrophes enclosing a

constant are not always required. They may be omitted

1-f any of the ±allowing conditions are satis1ied:

1/ The value of the constant consists e ntirely of

symbols which are letters or digits.

2/ The value o-f the constant consists o:f one

symbol which is not a punctuation symbol.

3/ The value of the constant consists of the

single period symbol and the constant is not

followed by a blank.

4/ The value of: the constant consists o.f two

symbolH which belong to the list of declared

special charac�er pairs. This list ls dynamic

- 29 -

In-tegers

criteria.

in nature and ls

Predica:Les ln conjunction with the OP bu:lt-

in predicate. The initial list of special

pal rs cons is ts of a sl nfzl.e entry ::for 11 <-" •

are constants

A constant

whose values satisfy cer-tain

ls an 1.n.iggg� if and only i.:f it

satis±ies any of the following!

1/ Its value consists of one or more digits.

2/ Its value consists of the symbol n+n :followed

by one or more digits.

3/ Its value conslsts o� the symbol n_u followed

by one or mor e digits.

Inte�ers may be used as arguments to several built-in

predicates whlch perform the fundamental operations of

integer arithmetic. Two integer constants are

equal(i.c. indlstingulshahlc) i.f their values are the

same a:fter any 11 +" symbols and leading Z'-H'oes have been

dropped. Thus 001, 1 +uoo1• and 1 are all equal

integers. Note that signed integers must be enclosed in

- 30 -

apostrophes.

A constant wll1ch ls not an integer is an atom. AB,

•AB(•, • + 1 and 1' are all J.toms. A sequence of symbols

which satisfy

l.den.1.l.£ l!lr...t.

the c rl teria :for a.n atom ls called an

A skeleton consists of an .identi:fler and one or

more argument terms. Both predica�es dnd functions are

representF� as skeletons. A skeleton has the ±allowing

:format:

<idcnti£ier> (<argument list>)

The argument l.ist

separated by commas.

FACT(1)

G(1, *X, F{ 1))

1A/.)' (>:'X,*Y)

consists OI one or more

Examples o:f skeletons are:

terms

Note that any o� the argument terms of a skeleton may

in turn be skeletons.

To permit a more convenient r�presentatlon for

- 31 -

skeletons, identiLlers can be declared as in�lx, prefix

or suf:flx. For example1

declared as infix then

11 the ideni:lfier LIKES

the skeleton represented

LIKES(A,B) can also be represented as A LIKES

ls

as

B.

Similarly, if the identifier l ls declared as su.:f:fix

then !(A) can be represented as A!.

An identifier used as the skeleton identifier in

infix, pref Ix or su:f.1:lx form is called an

The use of operator notation is provided in addition to

the basic notation skeletons whJ.ch was :first

described. The two "1:orms may be mixed :freely. For

example, if LIKES is declared as infix then F(A LIKES

B 1 LIKES(C,D)) is a perfectly acceptable .:form. A term

is represented ln £.fiDQn.ica.l. .!.Q£ID. when it ls represented

without using infix, pre�ix, or suffix notation.

In any term• subterms

indicate the term structure.

may be parenthesized

For example:

to

A+(B-C) is equivalent to +(A,-(B,C))

but (A+B)-C ls equivalent to -(+(A,B),C).

Any term or subterm may be parenthesized.

infix then {(A)) LIKES {C LIKES(D)) is

equivalent to LlKES(A,LlKES(C,D)).

l f Ll .K.ES is

a valid term

An ldcnti£ler can be declared as both pre.fix and

- 32 -

in�ix simultancous·.y but

declared

pre.fix.

as suffix can not

An identi:fier is

an i.dent i.i: ier

be dee la red

declared by

which is

as infix or

adding a.n

operato� declaration axiom. The :format :for the axiom

to he added ls!

OP((ldent l:fler>, <type>, (priority>) •

(identl1ier> is the identifier to be declared.

<type> speci£ies the declaration -type and may be

any 0£: PREFIX 1 SUFFIX, LR, RL-

(prlorlty) ls a positive integer less than or

equal to 1000.a

The decl.a-ration types o:f SUFFIX and PREFIX have an

obviou� interpretation. The types RL a.nd LR are used

to declare operators as infix right-to-1.e:f� and le:ft-

to-right respectively. For example, lf 11• 11 is declared

as RL then

A.B o NIL is equivalent to A.(B.NIL)

I:f 0 + 11 ls declared as LH then

A+B+C is equivalent to (A+B)+C

- 33 -

the

�n<l to +(+(A,B),C)

The priority speci£led 1n the declarations gives

poriltlon of the declarations in a priority

hierarchy. The larger the numeric priority the

stront:Zer the 11 binding 11 o:f the operator. The :fol lowl ng

examples illustrate the £unction of. the pr i o l" i ty. For

these examples assume that the following declarations

are in ei:-fect!

Then:

OP(-,,PREFIX,40).

OP(!,SUFFIX,70).

OP(.,RL,50).

OP(+,LR,60).

OP(-,LR ! 60),.

-,A! is equivalent to ,(A!)

A+ B-C • D+ E • F is equiv al en t to ((A+ B)-C) • ((D+ E) o F)

�A+B! ls equivalent to ,(A+(Bt))

The problem o:f resolving the cu.Be where two

identl:flers have equal priorities but dl.fferent

- 34 -

dee lara·t ion -types has not yet been discussed. For

instance J:f the declarations in effect ar-0:

OP(+,LR,60).

OP(-, RL,·60)o

then how is A+B-C to be interpreted ?

The rule £or resolvlng such conflicts ls:

If the rightmost operator is declared �L and the

le£tmost operator is PREFIX(or RL) th· n treat

-the rightmost binding as the strongest.

Otherwise treat the le£tmost binding as strongest.

The example A+B-C ls equivalent to (A+B)-c. This de�ail

ls confusing, and it is recommended that the user not

declare operators with the same priorities and

. di:fferent types and hence avoid the condition

completely. The above description ls included solely

�or �he sake of completeness.

The initial state o:f the .Pl<OLOG system in.eludes

several operator declarations, namely:

OP((-,HL,10).

- 35 -

OP(<-,PREPlX,10).

OP(J ,RL, 20).

OP(StRL,30).

OP(-.,P.REFlX,40).

OP(• ,RL, 100).

Operator declarations can be added and deleted by

adding aad deleting axioms �or the OP predicate as

described in �ii Databasg Pr..gdica.1es.

An input term must be delimited by an end=.:Q1:-tei:m

£.h!!.r..2<.� t er..!!.. The per l od is used. To distinguish between

the use o� the period as an operator and its use as the

end 0£ term charac�cr, the £ollowinR rules are used. A

period that is not enclosed in apos-trophes, double

quotes or comment delimiters ls treated as an end of'

term delimiter 1£:

(a) it is Iollowed immediately by one or ruore

blanks or

{b) it is the last character of an input line. {By

line we meun either an input line from

the terminal or an input record .from a

- ,36 -

:fil.c).

Blanks may be freely used in the input term,

subject to the �ollowlng conditions:

(a) Blanks may not be used Jqternal to an unquoted

ldenti:fler or constant AB :ls

di:f1erent :from A B since AB is a single

identifier and A B represents two

identlLers, namely A :followed by B).

(b) Blanks may be used ln a quoted constant or

ldenti:fler but they are included in the

value o1 the constant(e.g.

the same constant as 'AB'}.

1 .A. B' is not

(c) One or more blanks rnust be used to separate

the :foll.owing:

(1) two quoted ldenti.f.ie rs or

constants(e.g. 1 A 11 B 1

constant with value

represents

represents a

A'B whereas

two constants

with values A and H respectively).

(2) two unquoted

constants where

solely of special

identifiers or

neither consists

characters(e.g.

A; ls equivalent to A ; but A12 is

- 37 -

not equivalent to A 12).

(d) Blanks must not be used after a period e�cept

where the period is an end-o:f-term

delimiter.

Whenever one or more blanks may be used, a comment may

be inserted. A £.Ql!!.lll.!.Ul.1 has the t'orm:

/*<comment characters>*/

<comment characters> may be any sequence oI characters

not including an as�erisk followed immediately by a

slash. Note that this .i'ormat f'or a comment implies

that it I is declared as a pre1ix or in.i'ix operator and

is used £o1lowed by a variable then a blank must appear

between the / and the :1,, of the V;;triable. To help detect

errors caused by an improperly closed comment a warning

message ls issued i£ a /* is encountered in a comment.

Axiom and goal statements are special cases o:f

ter.ms. They are read and parsed using the operator

declarations. Thus the axiom A(-DSC could also have

been entered as (-(A, t;(D,C)).

term oL the £orm!

- 38 -

A gQ..Q;l statement is a

<-((goal conjunction>).

An !!.Kl.Q.!!! is a term o:f the :form:

(-((head>,<goal con.Junction>).

or <bead>.

<head> can be an atom or a �keleton.

e.g. A

A(1, *X)

'B:'{*)

<"oal conjunction> can have the form

(goal literal)

or -the :form

&((goal 11-teral),<goal conjunction>)

(goal literal> can be an a�om,skeleton or a variable.

A variable goal li-teral is called a meta variable and

ls described in ;J.i.]_ ;gx.g�l.QD .QQD.i.!:Q.1- Predicates.

A 1.i§..!

example the

represented

-formed wl-th the

and the <�llf!-o.1=.l.J...st rna.rl.er NIL.

list with elements

as A.B.C.NIL or in

- 39 -

A, B

canonical

and C

form

l.l...§.1

For

is

as

.. 1 A,.(n, .(c,NIL l)). empty list is represented as

NIL. is a list o:f characters, or more

precisely, a list constants each with a single

charact\.· r value. An abbreviated �ormat ls provided to

represent strings. The format ls!

n(characte.rs>n

F'or example:

11 ABC 11 is equivalent -to A.B.Cc�IL.

"{)11 is equivalent to 1 (1 • 1)1 .NIL.

An empty list may also be specliied:

nu ls equivalent to NIL.

Note that "AB n is equivalent to .(A,.(B,NIL))

the period is declared as ln�ix righ�-to-le£t.

- 40 -

only if

The implementation provides several bullt-ln

predicates. These predicates provide :facilities which

it ls elther impo5slble or inconvenient :for thH

programmer to implement dl.rectly in PROLOG. Many

built-in predicates have side e :f .f ec ts 7 particularly

The h u .i L t - in those associated

predicates can

predicates do.

wlth Jnput

succeed or

and output.

fail, exactly

They can also terminate with

message if the arguments are inappropriate.

In general it is no-t poss.lb le to add

as other.

an error

axioms i.or

built-in predicates. The single exception to this is

the OP bu.ilt-ln predicate described .in 3.1 Q.Qtaba.§£.

The built-in predlcates are divided lnto seven

groups. The groups and their members are:

Structural Predicates - ATOM, CONS, INT,

VAR ..

- 41 -

SKEL 1 STRING 9

Input/Output Predicates - NEWLINE, READ, READCll, WRITE,

WR;TECH

Arlthme�ic Predicates - DIFF 1 PROD, QUOT 1 REM, SUM

Workspace Predicates - CLEAR, COPY, LOAD,

WSID

PCOPY, SAVE,

Database Predicates - ADDAX, AX, AXN, CONTROL, DELAX,

OP

Execution Control Predicates ANCESTOR, RETRY,

1 ' FAIL, ERROR, STOP,

/, s,

meta

variable

Miscellaneous Predlca�es - DIGIT, LETTER, EOt GE, GT,

LE, LT, NE,

The predicates 0£ each o� �he above groups are

described in th� �allowing sections.

- 42 -

These predicates provide £or altering and testing

the structure oI terms. The predicates are ATOM, INT,

VAR, SKEL, CONS, and STRING.

ATOM, INT, VAR, and SKEL each have a single

argument. If the argJment ls o± the type speci£ied by

-the predlc<'t te name• namely an atom, integer, variable

or skeleton respectively, then the predicate succeeds.

Otherwise the predicate £alts. In no case is any

substitution performed or are any error messages·

produced.

Example:

TEST(*X)(-INT(*X)6TESTINT(*X).

TESTC*X)<-ATOM(*X)6TESTATO�(*X).

/* USE TESTINT TO PROCESS AN INTEGER AND TESTATOM

TO PROCESS AN ATOM *I

Suppose we wish to de:flne an axiom which is passed

a skeleton and prints the skeleton nume. In order to do

th.ls we

decomp<>se

OE�ed the CONS predicate. It is used

a skeleton into a list consisting o�

to

the

skeleton nurne following by lts arguments. For example

- 43 -

the call <-cONS(*X,A(B)) will cause *X to be unl.fied

with A.B.NIL. CONS may a:.so be used to construct a

skeleton term from a list consisting o:f the skeleton

name :followed by lts arguments. For example the call

<-COi-J'S(F. t.cx.3 .. NIL,*Y) unifies *Y with F(*X,3). CONS

treats a constant as a skele ton of 0 arguments, as

shown in the· examples below. I:f the second argument ls

not a vari"'-ble then a list consisting o:f the skeleton

name :followed by i ts arguments is unl:fied with the

:flrsi: argument. If' th� second argument is a variable

then a skeleton is cons-tructed �rom the Lirst argument·

and unified with the second argument. In -this case the

first argument must be a list whose ilrst element is a

constant and whose remaining elements are to be the

arguments. I:f the :first element o:f the list .is an

integer then there must be no more elements in the

11st, since

Examples:

an integer is not a valid skeleton name.

The �ollowlng calls succeed.

(-CONS(ATOM.NIL,ATOM).

<-CONS(lO.NIL,10).

<-CONS(A.B(C).D.*XeNlL,A(B(C),D,*X)).

- 44 -

The following uxlolli accepts a skeleton ah a 1irst

argument and returns ln the second argument a skeleton

like the :first but with an initial argument o:f 99

added.

EXPAND(*SK1 1 *SK2}<- CONS(*N•*ARG$,*SK1) S

CONS(*N�99.*ARGS,*SK2).

St1ppos.a we wish to determ�ne an constant

contains the letter A in its value. J-f the 1:irst

argument oL the STRING predicate is a constant then the

second argument is uni±iect with the list 0£ characters

in the value o.f the constant. The :following axioms

de£ine a predicate CONSTANT(*X} which succeeds 11 *X is

a constant containing an A.

The

co::.rnTANTA{ '�CCN) <- STRING(,:,coN f):,LIST) f;

LISTA{ >:'LI3T).

LISTA(A.*REST).

LISTA(*FIRST.*REST) <- LISTA(*REST).

STRING predicate may also be used to compose a

constant from the list of symbols in its value. There

are two possible :formats for a call to STRING:

(a) The first argument is a constant. The constant

- 45 -

is dee 01:.posed to create a list whose

elements the symbols in the

constant•s value. This list is uni:fied

with the second argument.

(b) The flrst argument is a va r i ab L e • The second

argument must be a list of' zero or more

elemen·-s, such that each element is a

constant with a va.luH consisting o:f a

single symbol. The .£ irst ar:1;ument is

unl:fied with the constant whose value

consists o:f the symbols in the list.

l:f the arguments are other than as prescribed an er ror

message is generated. Examples:

The 1ollowing calls succeed.

<-STRING{ 1 AJ3C 1 , u ABC")•

<-STR1NG(11 ,NIL).

<-STRING(ABC,A.n.c.NIL).

<-STR1NG(0012,1.2.NIL).

The 1:ollow.ing predicate accepts a constant

flrst .argument and produces

pre .f 1 xi ng t lw f i rs t w i th a Q.

the second argument

APPEND{*IN,*OUT) <- STRING(*IN,*S) S

STUING(*OUT,Q.*S).

- 46 -

as a

by

Input/Output predicates are prov.ided to allow a

PROLOG program access to external data. A file ls

ldei::t l:f led by a constdnt whose value ls the :file

identl£ier. A 1i�e identifier may consist of from 1 to

8 characters1 the -.f.i.rst o..f which must be a letter and

the remainder must be

input/output predicates

le1:ters or

each have an

digits.

optional

The

:Cl le

identifier argument� L:. thl.s argument is omitte<i the

main input/output stream is assumed (i�e. the terminal.

£or an lnterac�ive session).

READ is a predicate with one or two arguments:::

The second argument is the optional £1le identl£ier. A

term is read 1rom the indicated file

the f.irst argument. The term must be

and unified with

delimited with

the end o:f term character. Ii: the end of the input

file has been reached the predicate falls. I :f

backtracking returns to the read then a read of the

next term will be attempted. If the term read cannot

be unified with the first argument or the 1ormat of the

term is invalid then backtracking

the next term to be attempted.

- 47 -

will cause a read of

WRITE is a predic· . .1.te with one or two arguments.

The second argument is th" optional :flle identi:fier.

The term speci:fied by the flrst argument is written on

-the indicated file. The term ls delimited by the end 0£

t e rm char act e r • The term is written using pre£.ix,

infix and suffix notation where appropriate, as

indicated by the ope�ator declarations at the tlme of

wrl ting.

READCH is a predicate with one or two arguments.

The second argument ls the optional file identifier. A

sing�e character ls read -from the given file. The

constant whose value is the single character is unif�ed

with the 1irst argument. If the end 0£ an input line

(or record) has been reached then the £ irst charact e1 ..

of the next llne (or record) is read. I:f the end of

the lnput 1'.lle has been reached then the predicate

falls. Lf backtracking subsequently returns to th.is

point or Lf · the uni flea t ion o:f the �irs� argument and

the character :fails, then the next character in the

input �Ile is read and the uni£1catlon reattempted.

WRITECH is a predicate with one or two arguments.

The second arc.!ument is the optional file identl.flcr.

The £lrst argument specifies a term which is formatted

- 48 -

usln� the operator declarations (as .for WRITE) a.nd

placed in the output bu�fer £or the given file. I:f the

buffer is flllcd then it ls written to the given rile

{ and emptied). lf .. the buffer is partially :filled then

1 1: is not written out.

WRITECH predicates are not

Note that the

symetrical ..

READCH and

The WRITECH

predicate can be used to write a single character but

it ls considerably more general than READCH.

NEWLINE ls a predicate with one optional arµument.

The argument is the file ident.i:fier. NEWLINE writes

the current output buf�er to the �iven :file and empties·

the bu:f:fer. NEWLINE is used in conjunction

WRITECH. For example, the goal statement:

(-WRITECH{'CN •) 6 WRITECH(ONE) 6

WRITECH(1 LINE.•) 6 NEWLINE.

causes the �allowing to be written on the terminal:

ON ONE LINE.

with

Note t�at thls output is

the call

identical to that produced by

<-WRITE(10N ONE LINE').

or by the call

- 49 -

<-w R 1 T .EC H (1 0 N O 1) S WR I TE (t NE L l NE') •

There arc several predicates which are included to

provide the basic operations of integer a1� 1 t hme tic.

Each predicate has three arguments. The xirst two are

the input parameters and the last is the result

parameter. The £lrst two arguments must be integers.

The appropriate Integer �unction of the first arguments

is unl:fied with the third argument.

The arithmetic predicates are:

D1FF di�ference (subtraction)

PROD product

QUOT quotient

REM remainder

SUM - sum

The :following axioms define a predicate

calculates the :factorial :function o::f its

argument.

FACT(0,1).

- 50 -

which

.first

FACT(*X,*Y.l(- DIFF(*X,1,*Xl) 6

FACT{ *Xl, *Y 1) &

PROD(*X,*Yl,*Y).

The :following calls succeed:

<-DIFF(3, 2, 1) •

<-PROD(l0,20,200).

(-QUOT(205,10,20).

<-REM(205,10,5).

<-SUM(l,20,21).

3LQ. �Q.ck�Q�ce Predicates

A set of PROLOG axioms is re.fer.red to

When the PROLOG system is running,

as a

the

current set o:f axloms is re-ferred to as the acti.:yg_

X.Q r l< .tiIH!£Q...!..

malntalned.

ln addition a

A system of

library of workspaces is

built-in pred.icates is

provided £or manipulatin� these workspaces.

A. workspace ln the library is ldentl:fied by a

workspace

sequence o:f

character

ident l:f ier. A workspace ident ifler is a

.from 1 to 8 letters or dlgits. The first

o:f the ldenti:fler must

- 51 -

be a letter. The

active woi'kspace alsc has a ·workspace ldenti:fier

assocla�ed with it (re�er +� the WSID predicate below)�

If the identi�ler of the active workspace is CLEAR then

a SAVE predicate may not be executed without resetting

�he workspace ldentlfler.

CLEAR is a predicate with no arguments� It has the

e1fect of clearing ·he active workspace 0£ all axioms

and setting it to the initial state.

LOAD ls a predicate with one argument. The

argument must be an atom whose value is a valid

workspace identifier. The active workspace is loaded

from the l.lbrury workspace with the speci.fied

ldentl�ler. Any axloms or terms ln the original active

workspace are lost. The workspace identl£ier in the new

active workspace is set to that of the workspace which

was loaded.

SAVE is a predicate with no arguments. It causes

the active workspace to be saved in the �lbrary member

specif led by the workspace ldenti£ler in the actlve

workspace. The active workspace is left unchanged.

WSID may have zero., one or two arguments. When

used with no arguments it causes 1.he wut"kspace

ldentlfle1" associated with the active workspace to he

- 52 -

dlsplaycd. When used with one argument, the argument

must spcci.fy a valid "·"->rkspace identi:Iicr. The

workspace identifier in the active workspace is res£�t

to the specl:flcd value. When WSID is used with two

arg\..oments an attempt is made to uni:fy the current

workspace identifier with the second argument. I:f thls

unification succeeds, the current workspace Identifier

Ls reset to the value specified by the £irst argument.

The £lrst argument must be a valid workspace identlLier

or an error occurs.

COPY is a predlcate with one or two arguments.<

The :first argument always speci:fles a workspace

identif'er� is copie(i Into the ac�ive workspecB

:from the llbrary workspace with the given identi1ier.

I:f a single argument is speci£ied then all axioms and

operator declarations are copied :from the

workspace. If a second argument is speci£led

library

then it

must be an identifier (i.e. an atom). All axioms and

all operator declara�ions £or the given ldentiLier are

to When an attempt ls made to copy the

axioms :{ 0 .r a given pre<Jica.te name and number of

arguments a check is made to see if any axioms exist

.for that name and number o� " arguments ln th e active

- 53 -

workspace. l:f any such uxloms exist they ...1.r,3 deleted

be.core the new axioms are copied in. Simi tarly 1.1'. an

operator declaration :for dn identi:fier ls :found in the

library workspace then all <:eclara t l ons .for the

operator in �he active workspace are deleted and the

new declaration is added.

PCOPY ls a predicate with one or two argumen�s. It

ls similar to COPY but l·t per:f ol:"ms a protected copye

The dl:f:ference is that PCOPY ne�er deletes axioms or

operator declarations 1rom the active workspace. When

the situation arises which causes COPY to per.form a

deletion, PCOPY 1eaves the active workspace data intact

,:u .. d does not copy �he axioms or operator dec1ara�lons

in question.

J�_!i Dataua� Predi�ate§

The database built-in predicates

facility for updating the database (i.e.

axioms in the active workspace). The

provide

the set

the

of

predicates

provided are ADDAX, AX, AXN, CONTROL, DELAX and OP.

The ADDAX predicate is used to add an axiom �o the

- 54 -

database. lt has one 0� two arguments. The :first

a1�ument must be a valid axiom. It may be:

(a) a unit axiom. In this case lt is a skeleton or

an atom.

(b) a non-unit axiom. In this case it ls o'f 1.he

:form must he a

skeleton or atom.

The axiom speci�led by the Iirst argument ls added to

the database. If a sJngle argument is specified then

the axiom is added a1ter all other axioms with the same

predicate name and number o:f arguments. If the second

argument is speci:fled it must be an lnte#e.r or a

We first explain the case oX a call with two

ar�urnents where the second ls an integer. This integer

specifies where this axiom is tn be added, as an index

in the list 0£ a1l axioms for the same predicate name

and number o:f arguments. Consider the :following list

o:f axioms:

A(1).

A(2)(-B.

A(*X)(-C(*X).

A(4).

I:f the predicate call

- 55 -

(-ADDAX(A(M)) • or

<-ADDAX(A(M),SJ. or <-ADDAX(A(M),100). were t5sued then

t�� new list would be:

A(1).

A{2)(-B.

A(*X)(-C(*X) ..

A(4).

A(M).

IL the call <-ADDAX(A(Q),1). were

would become:

A(Q) ..

A(1).

A(2)<-B.

A(*X)<-C(*X).

A(4).

A(M).

then issued the 11st

The index specified gives the index in the list where

the axiom ls to be added. II the index is 1 or less

then the axiom ls added be�ore the £irst axiom in the

list. Similarly if the index ls greater than the index

o:f the last axiom then the new axiom is added at the

end of the list.

If' ADDAX ls called with a second argument o:f a.

varidble, the uxiom specl1led by the_ 11rst argument is

- 56 -

added at the end o.£ the list and lts ind·,x ls then

ur_.:.fied with the second argument.

The DELAX predicate is used to delete an axiom

1'.rom the database. It may he called with one or -two

arguments. The Llrst argument is a term representing an

axiom. The first argument may be!

(a) a unit axiom. In this case It ls a skeleton or

atom.

{b) a non-unit axiome In thi.s case it is oi the

:form <heaa><-<bo<iy). <head> must he a

skeleton or atom.

Thus the :first argument s�eci:fies the name and

n\Hnher o:f arguments £or the axiom i:o be deleted .. I:f

only one argument is specified then an attemp� is made

to unify the argument with each o:f the relevant axioms

in the database. The axioms are selected in the order

in which they appear in the database. I .f no axiom is

'found which is unifiable with the first argument then

the predicate �alls. l:f the unification succeeds :for an

axlom then the axiom is deleted and

succeeds. 11 backtracking subsequently

the predicate

returns to this

point then the prt!dicate will fall, thus preventing

accidental deletion o� further axioms.

- 57 -

If two arguments are speci:ticd then the second

argument ls considered to be the axiom Index. ·lt may be

a variable or an integer. The attempts to uni :fy the

-first argument with the database axioms proceeds as in

the case o:f (>ne argument. I:f the unlfcatlon succeeds

£or a given axlom then an attempt is made to uni�y the

axiom index with the second argument. I:f t �1 e at ·tempt

fails then the search through the axioms is resumed. I£

the attempt succeeds then the axiom is deleted and the

predicate succeeds. .I "f backtracking subsequently

returns to this point then the predicate will £ail.

The AX and AXN predicates are used to retrieve

ax1oms �rom the database. The AXN predicate re�rieves

axioms uslng the predicate name and number o.f

arguments. The AX pred.icate retrieves axioms using a

model axiom head.

The AXN predicate has either 0£ the two £ollowing

:formats:

AXN(<name>,<nargs>.<axlom>)

AXN(<name>,<nargs>,<axlom>,<Jndex>)

The predlca.te call AXN(C,2,*A) will cause *A to be

- 58 -

uni.tied U(ith the £lrst axlon1 :Cor predicatJ C wi�h 2

ar�umcnts. I:f there are no axioms :for C with two

arguments then this call would ral L. I.f 'the call

succeeds and backtracking subseq,�ently returns to this

point then an attempt wil� be made to unify *A with the

next axiom :for C with two arguments, a nd so on. The

predicate call AXN(C,2,*A,*1) iunctions identically

except that when the call succeeds, *I is unl:fled with

the 1.nuex. of the axiom uni:fied with *A• Similarly the

call AXN(C,2,*A,3) will retrieve the third axiom ±or C

with two arguments, if one exists,. The predicate call

AXN{C,*N,*A) will uni-fy *N with O and uni:fy *A with -the

.first axiom :for C with 0 ar�uments. I :f thls

unification fails or backtracking returns to this point

then the next axiom for C with C arguments is selected.

When all axioms for C with O arguments are exhausted

then *N is unified with 1 and the axioms Lor C with 1

argument are retrieved in turn. This process can

continue until all the axioms £or C have been examined.

The :fourth .lndex a·rgument may be inc-ludcd and it

functions analogously to the previous case. For example

the goal statement:

(-AXN(F,*,*A)&WRITE(*A)SFAlLo

- 59 -

lists all axioms .for predicate F.

The �oal statement

(-AXN{F,*N,*,1)6tRITE(*N)SFAIL.

wr.ites out the di:fferent number 0£

which F has an axiom.

arguments ::for

The call AXN(*NAME,*N,*A) can be used to examine

-the axioms for each predicate name ln turn. Flrs-t a

predica-te name is selected -from the da.tabu.se and

unl.fied with i:he first argument. Then en:ch o:f the

axioms :for this predicate are examined in turn as in

the previous examples. A:f ter the last axiom for 1:he

given name ls examined then the £irst argument will be

uni1ied with another name in the database and the

search will con-tinue� The order in which the predicate

names are examined is not readily predictable since it

depends Oll the hashing algorithm of this

implementation.

considered to

Consequently this

be arbitrary. The

order should be

statement will cause all axioms ln the

following goaL

datu.base to be

listed:

<-AXN(*,*,*A)SWHITE(*A)GFAIL.

The AX predicate functions

- 60 -

in a manner very

slmilar �o the AXN �rcdicatc. Again there are two basic

formats:

AX(<bcad>,<axiom>).

AX(<heact>,<axiom>,<index>).

<axiom> and <Index> are treated exactly as for the AXN

predicate. <head> is a model axiom head and may be a

ske le·ton, ci·� atom or a variable. If <head) is not a

variable then it speci�ies a predicate name and number

of arguments implicitly. The axioms £or thls name and

number 0£ arguments are examined as £or AXNc 1£ <head)

is a variable then all axioms in the database are

examined in �urn as :for AXN{ *,:-:�,*A). I :f an a�iom

uni:fies with

axiom h,2ad

the specl:fied axiom

is unified with the

then a model oj: the

fi.rst argument. By a

model we mean a skeleton with anonymous variables i:or

alt arguments. The model idea is introduced so tha.t a

theorem prover written in PROLOG may use AX to retrieve

the axioms relevant

actually unifying the

term.

to predicate term without

axiom head and the predicate

The OP predicate is used to manipulate operator

- 61. -

declarations. I ts use was .introduced ln �.1 .I...t.st · §yn.i!l�

Adding a unit axiom·.for the O.P predicate

(with 3 arguments) ls equivalent to adding an operator

declaration. Similarly, deletir:� a unit OP axiom

deletes the operator declaration represented. Thus one

can delete an operator declaration with a call 0£ the

:form:

DELAX(OP(<operator>,<type),(priority))).

where:

<operator> is an atom identi�ying the operator.

(type) ls an atom specifying the declaration type and

may be any one of LR,RL,PREFIX or SUFFIX.

(priori�y) may be an integer or a variable.

I:f a matching declaration is �ound it is deleted.

A ca�l to the OP predicate may be used to retrieve

an operator declaration, For example, the call

OP(.,RL,*P) succeeds Lf "•" is declared as RL. In this

case *P would be unl�led with the pr.iority. The call

OP(• t ;� T, * P) succeeds i:f -the re is an operator

declaration :for "•" The �ollowing goal sta-tcment will

list all PREFIX operators:

(-OP(*OP,PHEFIX,*)6WRITE(*OP)6FAIL.

In this case backtracking to the OP predicate

- 62 -

call

c�uses each pre£lx uccl�rution to be retrieved ln turn.

No1:e that the order in which the declarations are

retrieved is pseudo-random and not the order in which

"the original declarations were ddded. However 1:1.:. an

operator is declared as both pre.f lx and i n:f ix, the

pre�ix declaration ls always retrieved first. The

-:following ,goal statement will list all· ope.rator

decla.ra t.ions!

(-OP(*OP,*T,*P)SWRITE(OP(*OP,*T,*P))SFAlL.

CONTROL predicate is used to provide some The

special global variable facilities. The CONTROL

predicate has iwo arguments, a hg� �nd a r..�lt.!.. For

example, the call (-CONTROL(TOP,*X) retrieves the

result corresponding to key TOP and unl�ics this result

with *X• The key and result pairs are manipulated ln a

£ashion similar to operator declarations. To add a key-

result pair, an axiom for CONTROL is added. Adding the

axiom CONTROL(TOP,3) records result 3 for the key TO?.

Only one pair Cd.fl be recorded for any key value. I .t a

pair exists with the same key as one being added, then

the previous pair is replaced. The key must be an atom.

The result associated wlth the key mu:3t be an a.tom or

- 63 -

an integer.

deleting the

A key-result

appropriate

pair may be deleted by

axiom :for the CONTROL

predicate. For example (-DELAX(CONTROL(TOP,*)) will

delete the key-result pair with key TOP. A subsequent

call of the 1orm (-CONTROL(TOP,*) would Iail sine(� no

pair exists. The call (-DbLAX(CONTROL(TOP,09)) would

succeed only i :f the key-result pair of TOP-99 ls

currently recorded. The key-result pairs recorded in

the data base may be queried in a manner simi la.r to

that used £or operator ceclaratlons. For example::

lists all key-resul� pairs in the data base.

<-CONTROL(*K,99)SWRITE(*K)SFAIL.

lists all keys with a result 0£ 99.

<-CONTROL(I,*R}SSUM(*R,1,*R2)&ADDAX(CONTROL(I,*R2)).

increments the result integer corresponding to key I.

The CONTROL built-in predicate

certain special keys to control

key VERBOSE has an associated

ls also used with

system options. II the

result of ON the

system lists any goal statements which succeed.

the

The

goal statement <-<goal conjunction> is written in the

- 64 -

f. orrn (goal conjunction><-, display i.· g any

The in-:tantiations made :for variables in the proof-,

goal statement <-SUM(2,2,*} causes SUM(2,2,4)(- to be

written on the terminal. 1-f the key VERBOSE does not

have result ON, then a success1ul goal statement ls n�t

listed.

If the key NOAX has an associated result of ON

then the system indicates each call to a predicate for

which there are no axioms (and no compiled routines).

For each such call a massage o-f the form 0 NOAX - xxxxx

nn" is displayed. xxxxx is replaced by the pred1cate

name and nn ls replaced by the number o:f arguments.

With th.is �eature, the goal <-SUM(1 1 2.3JIPRODQ(3,4,12)

causes the £allowing messages to be displayed:

NGAX

NOAX

?

SUM 2

PRODQ 3

This feature ls initially enabled and may be disabled

by deletin&J the CONTROL(NOAX, ON)

CONTROL(NOAX,OFF). To enhance the

feature, the FAIL predicate (with

axiom or adding

usablllty of

no arguments)

this

is

included as a bullt in predic.t.:i.te which always fails.

Thus spurious messages of �he form NOAX - FAIL 0 are

- 65 -

avoided.

The k�y LOWER ls used to control the transla,ion

of input from the main input stream. If LOWER ls set to

ON then lower case letters 1rom the terminal are input

as lower case. I� LOWER is not set to ON then lower

case letters rrom the terminal are translated to upper

case as they are input. LOWER ls initially se� to OFF.

�.7 Execution .Qgntrol f.rg_di.£�!.g§_

The execution control p.red ic a -t��s provide

facilities for testing and controlling the progress of

a proof. The ANCESTOR, RETRY, /, S, I, FAIL, ERROR, and

STOP predicates are included and the meta variable

:facility is also provided.

The n�r_gn� or a given literal in a proo:f is the

literal which invoked the axiom containing the given

literal. In the implication tree describing the proof,

the parent literdl labels the node above that labelled

with the literal. literal include

its parent and its pu.rent•s dncestors. The ANCESTO�

predicate is used to examine the ancestors o:f the

- 66 -

literal which invok - d the predicate. When ANCBSTOR ls

used with one argument, the argument is unl�led ··1th

the most recent ancestor £or which this is possible. I:f

the argument cannot be uni-fled with any ancestor, the

predicate falls. I.:f the predicate succeeds and

subsequently backtracking returns to this point in the

proo:f, the argument is unified with the

recent ancestor and so on. The .foll. ow i n g

1.,ext most

axiom will

lis-t all 01 the ancestors of the ANCESTOR literal and

then :fall.

LISTANC<-ANCESTOR(*A)6WRITE{*A)SFAIL. Note that

the :first ancestor l.isted will be LISTANC.

When the ANCESTOR predicate is used with two

argumen-ts the £irst argument �unc�ions in the same way

as the single argument above. The second u.rgument ls

the a�stor index. For a given literal the ancestor

index o:f l ts pa!"ent ls 1, the ancestor lndex of its

parent's parent is 2, etc. The -first argument is

unl�led with each ancestor in turn as above. l.f this

unification ls successful �hen the second argument is

unl:fled wi-th the current dncestor index. The following

axiom will list the .five mos-t recent ancestors o.f the

ANCESTOR literal:

- 67 -

L1STANC2<-ANCE�TOR(*A,*N)6WR1TE(*A)6EQ(*N,�).

The RETRY predicate ls provldt.�d to :facilitate

recovery from an error situation. Aiter a correction

hus been made, the proof rn'.l.Y be restarted .:from some

point be�ore the error. RETRY has one or two arguments

which control a search through the ances�ors �xactly as

for ANCESTOR. The difference is the action taken upon

success. II an appropriate ancestor ls found, the proof

is ha.eked up to the point where the subproof f'or the

ancestor literal began and the proo± is resturted Lrom

that point. RETRY restores the proo£ to the state it

had at a particular• point in the past. Consequently

RETRY is only use1ul when some change has been made to

the axloms.

The slash predicate with no arguments was

described

The slash predicate ls also provided in a more general

:form with either one or two arguments. The arguments

control a search through the ancestors exactly as for

ANCESTOl< and I'l'.ETRY • l .f this search fails then the

predicate �ails. If the search succeeds then certain.

- 68 -

available choices ure cl imina te<l :from an existing

portion of the proof:. All choice points are removE:·: in

the var-t of the proof £rom the point o:f selection o.f

the givPn ancestor literal to the current point in the

proo.f. Thus a call of the .form /(*) has

same e±1ect as the simple nullary / call.

1ol�owing example:

A <-BSC f;D •

D<-E.

c<-FSG.

p _.

G(-/(C)f;H.

<-A •

• • •

exuctly the

Consider the

The implication tree has the following :form when the

unary sLash is called:

- 69 -

gna1

l

I \

I \

�

I
I \
F

X I \

\

/(C) H

Al� choice points �rom the selection of c<-FGG onward

are e"l.imina ted. Thus if H £alls an alternate proo£ £or

E wil� be attempted

deleted).

(and the subproof o� C will be

The meta variable £acitity allows a variable to be

used ln place of a literal in a goal or in the body of

an axioni. When the variable ls encountered in a proo±

it must be bound to a literal. The proo± proceeds as 1£

this literal occurred instead of the variable. For

example, the :following axiom defines a predicate EXEC

which reads a term and 11 cxecutes n it.

EXEC(-READ(*X)�*X•

Axioms are included for the

- 70 -

6(*, *) and the I { *, *)

predicates. The axiom..:; fo!' are!

l<*X,*Y)<-*X•

I (*X, *Y ><-*Y.

These axioms allow alternatives to be specified in a.n

axiom body or goal with �he desired ef:fcct. The a.xiom

ior G ls:

S{*X,*Y)<-G(*X,*Y).

This axiom may look a bit ridiculous but it is useful,

particularly when using the meta �ariable facllltyo For

instance, 1£ as inpu� to the EXEC axiom above, ASB is

specified, then this axiom for 6 would be invoked and A

and then B would be called.

The FAIL predicate (with no arguments) is provided

as a built-in predicate which always :fd.ils. This

predicate is provided even tho�gh providing no axioms

�or FAIL would yield a predicate which al.ways :fails.

The reasons for providing such a predicate are:

(a) The FAIL predicate gives a standard name f'or a

predicate which always :falls.

pro1{rammi ng standard which may

T.his imposes a

improve program

readability. This stu.na.ard predicate could also

mukc it easier for a compiler to per:form certain

optimizations.

- 71 -

(b) Thr� provision o.e the hullt-in FAIL predicate makes

the N'JAX .feature of the CONTROL

use.ful. Refer to the descrlptlon of

predicate in 2.!..Q DataQ.!:!� Predicates

detai1.s.

.featu!"c ·1ore

the CONTROL

£or :further

The STOP predicate ls used to leave the PROLOG

system. The execution 0£ the STOP predicate terminates

the PROLOG session and returns to the operating system.

All axioms and operator decldrations in the current

workspace are lost.

The miscellaneous group includes predicates to

test the collating sequence o1 constants and to test i�

a symbol is a letter or a digit. A collating sequence

is de£1ned for the values 0£ constants as follows:

(a) Any atom is less than any integer.

{b) Integers are related by the conventional.

ordering for integers.

(c) A toms are ordered by the lexical ordering

imposed when the ordering o± the symbols is

- 72 -

�

us dc.fJrwd hy tht' «,tuncfard l·IICOIC' nrdf"'rlnt!q•

Slx hu i l t -J n pr ('I(j CO f ('� arr prov t d<•d t ('q 1. t t-t'

rrlutlon h,•twPcn two c-onc;;tai,1�. I: u <' h pr , .. d l c d t ,, h q l o

o r /.! urn <" n t R , hoth of

relation� which CuU'-i('

L 1' - Alr�umon1
•l .

Lr - a r1:uml• 11 t

2

GT n r f • u i.t i • n t

GF - ., r� \tmP n t

6 l' 11\.l n1 (� I\ t

EQ o.rgur, .. ·nt

NC - n r {! unf' n 1

<-lT(A,�)7).

(-GT (.) t • - 2 •) •

(-GF(.\�), .\).

(- N l· (. .\ U C' , C } •

'

t

l

2

l

1

(-FQ('APC' ,l\tt(') .

1

<-FO(1 2, 1 +u l 1 2 1 } •

"hlch muq1 cone.. t,, nt � •

I �

·�

l "'

l s

i �

<'D<'h nrt"•fic<'ltt• t ,o � U(:' c.' ,• C' rf

l t-, t .. " tt.rpunu•n t

l (' � q th n or ,. ",. l 1o n r f"U

µr ,. ,1 t r 1 h,\n u r ,. u r n t 2

l � ""'"'ntc-r Chun or •• u l

l'q u., l to rru.., n, .!

not t' 'lUCl l 1 (l ., r,, u" ,• n t J

-, .l -

Thr

,. "''

In

The predicate�.· LETTER and DIGIT ea.ch have

a.1 ... gumen t. The argument must be a constant.

predicates test if' the value o:f the constant is

single rYmbol belonging to the �, i vcn class. l .f

one

The

a

the

argument of LETTER is a cons�ant consisting of a single

capital let�er then the call succeeds. I£ the argument

o:f DIGIT ls an lnte�er from O to 9 lncluslv� then the

call succeeds.

Examples! The following predicate calls succeed

<-LETT ER(Z) •

<-DIGIT(O).

<-D IGl 'T{ 1 +0001 1) •

- 74 -

The essential £eatures of the implementation are:

(a) Data structures for

-terms

-substitutions

-environments

-axioms

-symbols

(b) Algorithms £or

-unLflca tl on

-interpreting axioms

-backtracking

-reading; terms

-wrltlng terms

The system is implemented in OS/370 assembler

language u.nd relics heavily on the use o:f macros to

simplify the implementation procedure. A general set of

progrti.m structure and linku.ge macros is used(7). In

addition several macros were written .for this

- 75 -

particular o.pplicatlon. Included in this

macros for building teri'us and axioms

describing table entries.

group

as well as

The /370 word consists of 32 bits orgd.nlzed as 4

bytt;!S o:f 8 bits each. An address is specl£le<l by the

·rightmost (Low order) three bytes in a word. Thls

addressing organization influences the details of many

o:f 1he do�a structures in the implementation.

The data structures used rely heavily on those

developed in the ori'°�inal PlWLOG l n te rpre te r. In

particular the elegant and e£:flcient structure sharing·

technique used therein to represent terms and

substitutions ls used here with minor changes only.

A symbol table is maintained for all identl:fiers

used in the worl(space. Each identi:fier ls

asslgned a

active

unique string descriptor and is

character·ized by the address o:f this descriptor. Thus

two ldentl:fiers are equal i :f and only the

corresponding descriptor addt"esses are equalo The

symbol table is discussed :further in .1.!..1 .§ymhol J:_g_h.1.Q

Qrillin1-za..tl.Q�

- 76 -

An i.nlll!.1 .i�rm is a term which has no s ubstitutions

associated with it. An axiom ls an input term until it

ls invoked in a proof, at which point substitutions may

occur.

An lcput term is represented by a term Y!..Q£il of the

.form:

C A

where A .is an address or number and C is a one

byte type code .identi::fying the kind o:f term

represented. C is called the te1 .. m id�tifier

l.h A ls called the term value. Tho types represented

by C are ..

(a) a.n integer: The term word represents an

integer. The term value is a twenty-£our bit

sipned twos complement representation o1 the

integer. Thus intea.ers from -8,388,608 to

8,388,607 inclusive can be represented.

(b) a vari<1.ble: The term word represents a

- 77 -

variable. Each variable in an input term is

rep.resented by a ��ll.Q..lll.£. al .!H!m.!.2_g_r: ..f r o 11\ 1 to

n, where ls the number of distinct variables

in the term. Thus l :f the axiom

A(*X)(-B(*Y,F(*X)). ls read, then *X ls

associated with 1 and *Y is associated with

2. A varlabie in an input term is represented

by a te1.--m word wl th an ID incticat.ing a

variable and a value which is a twenty-±our

blt d.isp laceit.ent. The displacement :for a

variable is derived directly :from the.

canonical number o:f the variable in the

original term. The displacement, which is

equivalen-t to the canonical number, is used

to reduce the calculations required to

re·trl eve the value o:f an instantiated.

variable. The use o:f the displacement will be

discussed :further

Qo.nst.!:.!Jcted Terms.

(C) U.11 atom. The term word represents an atom.

The term value specifies the address of a

symbol table entry 1or the atom. The symbol

table entry :for un identlfier is called a

- 78 -

(d) a skeleton. The term wo.rd represents a

skeleton by specifying the address o:f a

skeleton descriptor as £ollows:

Term word

)C J A ------>

Skeleton descriptor

JN I s I
1-----------1

J Argument 1 I
1-----·------ J

J Argument 2 I
1----------1

• • •

l ---------·---1
J Argument N J

A skel.eton descriptor occupies two or more

words. The .:first word ls called the .§.h;ele-tQn

Ji.�.!. The skeleton key consists of u. one byte

count{ N) and the addrcss(S) of the st..r.i ng

descriptor :for the skeleton name. N

specifies the number of: argu1nen ts that the

skeleton has. A skeleton can have £rem 1 to

255 arguments(lncluslve). Following the

skeleton key are N t ert,1 words rep resenting

the a1"gumen ts o.f the skeleton.

- 79 -

The Lollowlng diu.g.:•u.;11 dhows 1.h� l"'eµrescntatlo,J o.f the

axlom G<-B(13, *Y, F(,:ex)). The term IDs �or variables,

atoms, lntepers and skeletons are repesented as V, A, I

and S �espectlvely. The displacements 1or variables

wi�h canonical numbers 1 and 2 are �epresented by D1

and D2 respectively. A pointer to the strlng

descriptor for xx:x is .represented by --> 11 xxx 11 •

Is 1 • I
---1---

1

I --------
-> J 2 l J-----) n<-n

l-------1

IA) 1----> 11 G"
J------1

Js I • I
-.---1---

1

J -------
-> J 3 I 1----) nn 11

J-------1

111 13 J
1------1

JV) D1 J
1-----1
ls I • I
----1---

1
I ---------

-> 111 1--> 11 F"
1-------1

JvJ D2 I

- 80 -

When an axiom ls activa1:ed in a proof, an

crea�ed for the axiom. The environmen"t

contains in£ormatlon for backtracking. It also contains

a description of all substltions made in the axiom.

Thls substitution information is recorded ln a list

called the su}2.stitutj_on list or 1.he i.nst�ntiation li.sto

A term which has substitutions associ�ted with it

is called a constructed When an ar,.iom is

activated, the axiom (and all of its · subterms) become

constructed terms. A constructed term is represented as

an input term with an associated substitution

environment. A cons�ructed term is an instance o� the

corresponding input term. The value of the cons�ructed

term 1nay be detern.tined from the value o:f the

correspondinµ input term by using the environment to

retrieve the substitutions made :for the variables in

the input term. The internal representation OT a

cons�ruc�ed term requires two words. The first word is

the term word for the input Thi� second word

specifies the address of the appropriate environment.

The in stantiation list in the environment has an

- 81 -

entry for each the original axlom. Thu

.entry :tor a specific varluble ls either mat"ked to

indicate that the var.lab le is unassi gn'-�d or else the

entry ct·n-ta ins a cons-tructed term giving the value o:f

the term substituted for the variable. Thus a variable

is instantiated by placing the appropriate constructed

term ln the instantiation list e ntry. This

lnstantlation may be undone during backt racl,_ ing by

resetting the entry to 0 unasslgned"• Another importa nt

£eature of this representation for constructed terms is

in the area 01 storage requirements. When an axiom is

activated an environment of :fixed size ls required.

This ls the only space required (in aadition

space 1:or the input axiom), although the variables in

the axiom Jnay be instantlated to term.s o:f a.rbi trary

size and complexity.

The instantiation list ls a vector o:f entries.

Each entry (or .Yft!.l!Q Qgl.lJ. corresponds to a variable in

the axiom ussocJated with the environment containing

the instantiation list. The .first instantiation list

entry corresponds to the variable with canonical number

1, the second entry to the variable with canonic al

number 2 and so on. The displacement spcci£ied in the

- 82 -

term word :for a vurlable ls actually the displacement

o� �he value cell :for tha� variable :from the beginning

o:f the environment. Using this displacement, the value

cell �or a variable can be re£erenced directly, with no

search necessary.

The �allowing diagram shows a constructed term

representa.tion 1or the term F(3,G(*X 1 li(M)),H(M)). This

term has been constructed l:rom

F{3,G{*X,*Yl,*Y) by substituting H(*Z)

substitutlna M 1or *Z•

- 83 -

the input term

:for *Y and then

Isl 1--> 1 JI 1---> "F"

I • I JI J 3 l
1-----1 ----1----

1
I
I
I
I
I
J

ISi 1-->
1-,,-----1
JV J D2 I

J 2 l 1-->
1-------J

1 VJ Dl I
J-------1

iv! n2 I

"G"

I --�-----------

-> I J Environment for· F(3,G(*X,Y.'Yh*Y)
!--- --1-------1
I unassigned I Entry 1 - Cell £or *X
1-�----J�-----1

)SI • I • I Entry 2 - Cell :for *Y
--�-1------1�---

I I
J I ----------------

1 -) I I Env. for H(*Z)
I l-------1-------1
J I I A 1 1 --> "M tt

I
I
) - ---------

-> } 1 l J---) "H"
1-------1
)VI Dl I

The unification algorithm used is a simple depth

f.irst algorith11.1o The algorithm attempts to match two

constructed i=e rms. The matching process

- 84 -

either

succeeds or £ails. I:f .it ::fails then the e:f.fect o:f any

substitutions made during -:+·be unl:f.icatlon a�tempt ls

removed (I.e. the value eel ls for any var.lables whlch

were instantiated are reset to 11unassi�ned").

The unl1ication al.gorithm does not

11occurs 11 check. These means that it will

have an

not detect

that *X and not unii'.iable. An attempt to

unlfy these two terms will

substituted £or :::�x. Printing

generate an n inf i nl·te" output

cause to be

the resultant -term wi1.l

of' the form F{ F(F • • •

This check is omitted 1or reasons o:f ef£lclency and it

appears that the occurs check is seldom necessary in

PROLOG progrumrulng.

The st ructure sharing technique used to represent

constructed terms requires the uni1ication algorithm to

11 look up 11 the Vil.1ue 01 any variable that it encounters.

The fundamental step o± �his lookup process is called

dere.ferencing. Corresponding to a constructed term is

a dere£erenced value which is derived as �ollows:

(1) I£ the term word o� the constructed term does

not speci£y a variable then the dere£erenced

value is the constructed term itself.

(2) I:f the input term ls an uninstantiated

- 85 -

variable (indicated by value

cell :ior th(:! vari..1.ble), then the d.ere:ferenced

value o:f the constructed term is the

constructed term itself.

(3) lf the term word specl:fies an lnstani:iated

varlab1e then the dereLerenced value of the

-term is 1:he <lere:ferenced value o:f the

constructed term in the value cell for the

variable.

Note that in (3) above 7 a sear.ch down a chain o'f.

references will occur in the case o.f a variable bound

to a variable which is bound to a variable, By

dere:ferenc i ng. all terms 1.he unii:lcation algori i: hm

attempts to reduce the time required subsequen-tly to

retrieve the value o:f a term.

In the following description o:f the unification

p1"' ocess, 1 t is assumed that all constructed terms a.re

dere:ferenced be:fore checking them for matching. Also

the statement "A is a skeleton" is used as an

alJbrevlatJ.on .for "The dereferenced value of A is a

skeleton"• Similarly "A ls a varlaLle" ls used as an

abbreviation for "The dereferenced value of A is an

- 86 -

uninstantla ted The various cas�s which

occur ln the unl:flcatlon of the two constructed teri.,s A

and B are described below:

(1 > A and B arc both variables. 1± A and B both

refer -to the same variable the

addresses o:f

-then return

their value cells are equal),

11 success11 • If A

di1Xerent variables theq the

and B re.fer to

va.rlablcs mus·t

become bound to each othe.r. We must decide

whether to substitute A £or B or B 101 A. The

rule usec,l is! Substitute the variable whose

value eel l ha.s the lowest address for the

variable whose value cell has the highest

address. This ordering is selected so �hat a

trace entry is generated as seldom as

posslble(trace entries are descrlbed in 1�:z.

l}acktt"£:Ckiru;. !Ul<l Trac{;� Entries.lo Per-form the

indicated substitution and return °success"•

The substltutlon o:f. (say) B for A

per£ormed by placing the constructed term Lor

B in

(2) A ls

the value cell for A• This ls called

a variable and B

- 87 -

ls not a variable.

Asslgn B · o A and return "success".

{ 3) B ls a variable and A ls not a varla·,;le.

Assign A to B and return "success n .

(41 A ls a constant and B is not a variable. II B

is a constant equal in value to A then return

11 success", otherwise return ":failure 11 •

{5) A is a skeleton and B is not a vari�ble. I:f B

is not a skeleton then return •• 1: a i lure" • I.f

the skeleton name or number o:f arguments �or

B .ls not the same as :for A then return

11 .:f al l.ure 11• I:f 1:he name and number of

arguments match then call the uni:fication

algorithm recursively :for each o:f

corresponding argument terms. If any 0£ these

unl:flcatlons :fail then .return 11 :failure"• I:f

they all succeed then return nsuccess 0 •

In order to implement the recursion required when

matching skeletons, a uniLication stack is usect.

entry in the stack contains :five words, namely:

the term word for A.

Each

the environment pointer �or A.

the term word �or B.

- 88 -

the environment pointer £or B.

the index o� the current skeleton

argument.

Corr r:spondinf!, to ea.ch activation o:f an axiom there

is an environment. The environment contains an

lnstantlation list dS described earlier. The

env.lronmcnt ulso contains other lnformation required·

£or backtracking.

The na.tu.re of the backtracking algorithm ensures

that the l.l.£etimes o:f. axiom environments ure nested.

More explicitly, i.f environment A is created bt�:fore

envir<>nment B then envi.ronment I3 will be� annihilated

before A. Consequently environments may be allocated

and freed according

environment stack.

Three rcfr.isters

environment stuck.

respective uses are:

to a stack discipline

arc reserved ror pointing

The register names and

in

to the

their

RFREE points to the beginning o.f the free

- 89 -

areu on the environment stacko

RENV points to the current env�ronment.

HFAIL points to the £allure environment(the

£ai lur"-� environment :s explained in :l..!.2

When nn axiom ls about to be invoked, �ENV points

that is, the environment

£or the axiom which contains the 0 call" to the current

axiom. To create the axiom envlroriment the �ree pointer

(HFREE) ls incremented by the size o.f

environment and the envlronment pointer (RENY}

the new

ls set

to the newly crea�ed environment. The £ollowing

diagram illustrates the use of these registers.

J I
I Free I
J Area I
J-------------]<---HFREE
I Current I
I Environment I
J-----��----1<---RENV
I Parent I
J Environment I
l-----------1

I Other I
I Environments!
l ----·-------1
J Failure I
J F.nv i ronmen t I
J-----�------1<---RFAIL

J Other I
I Environmentsl

- 90 -

The

An environment contains the following 1lelds!

£allure code and failure pointer.

1allure environment pointer.

success code and success pointer.

success environment pointer.

term word £or argument literal.

the lnstantiatlon list.

data related to failure is described l n J..!'-:Z.

The success

environment pointer ls a polnter to the parent

environment which ls the environment to which control

wil"l be returned when this subgoal succeeds. The

argument li-tera"l ls the term from the parent axiom with

which the head of this axiom will be unl1led. The term

word 1or the argument literal is a word describing the

argumen·t literal in the :format (term .ID, poin1;er),.

Since the urgument term mus�· be an atom or a skeleton

the standard �orrnat Lor the term ID ls relaxed. An atom

ls represented by the standard code. A skeleton may he

represented using any other eight bit code ..

The success code and success polnter occupy one

word. On entry to an axiom this code/pointer ls

contained in reglster 1!HET. The code can ha.ve two

- 91 -

inte.rpre tat ions:

(1) The code ls zero. This occurs l:f

axiom is interpreted . In this

polnter ,.pol nts to the term word

the parent

case the

:for the

remalning conjunction 0£ the rlght hand side

o:f the axiom. A success return will go back

to the appropriate place in the interpreter

·to process "this conjunctlou.

{2) The code i s nonzero. This occurs lf the parent

axiom is compiled. In this case the pointer

gives the address in the parent compiled·

routine to which return i.s to be made. This

code poin1:er pair may be set in the

re_g:lster with a single BAL or BALR

instruction.

On entry to an axiom, an. environment is allocated�

The size of the environment depends on the size o1 the
! r· ·.

instantiation 11st.

lnstantlatlon list is

The number o:f entries in the

equal to -the number of distinct

varlubles in the original axiom. On entry to an axiom

all entries ln the instantldtion list are marked as

"unassigned" by setting the term word in the entry to

- 92 -

o.

The main interpreter routine interprets axioms. It

ls called .from a parent axiom and passed an argument

ll teral as· a parameter11 The .1:.i rst a.xi om whose head •,;as

the same predicate name a.nd number o� arguments is

activated. An environment is created and inltlalized

and the unl1'icatlon o.f the argument literal and the

axiom head is attempted. I:f the uni£lcation succeeds

then the literals o.f the axiom body are each 0called11

ln turn. If the original unification .falls or any or.

the 11called 11 literals £ail, -then the backtrack i ng

routine is Invoked.

A slgnif:icant :feature ·of the main

rout.inc is the means oj: accessing axioms.

interpreter

The string

descriptor address is obtained .from the argument

literal. This string descriptor ls the head of a queue

0£ predicate entries. There are two types of predicate

entry. One ls

information about

the system entry which

operator declarations

- 93 -

contains

and file

identifierse The other type 0£ predicate entry contnlns

information abou� axioms :fur the given pt.'edlcate name

and a specl.i'ic number o:f arguments. The in:formation

contained ls a pointer to a list o:f axioms or to a

routine :for a 11 complled 11 axiom. The majority of the

built-in predicates are imp1emcn�ed in assembler code

and they are accessed �hrough this routine-type entry.

For a routine entry -the predicate entry po.inter

gives the address of the routin e. The routine consists

of the routine entry data :followed by the actual code.

The principal element o::f the entry data is

environment sl�e. To call a predicate routine, control

ls passed to a common entry sequence which alloca�es an

environment and saves the important values in the

envlronrnent. Control ls then passed to the routine

code.

For a predicate entry o:f the axiom type the

pointer gives

axiom en-tries.

The entry also

�he address o� the :first of a queue of

one axlom. Each axlom entry describes

contains a word indicating the size oI

the instantiation list so that the lnterpre-ter routine

can allocat£:.� an environment o.1'. the correct size.

The relationship o:f string · descriptors and

- 94 -

p.redlc,t. te entries is Illustrated by the

dlagrani. Tbe uxiom entries are shown for

A(lt2), A <- ll and A <- c.

l Strinu Descriptor}
I £or A J

V

I Predicate Entry 1---)1 Axiom entry
±or A with 2 arguments! J £or A(1 1 2)

V

I Predicate Entry 1--->1 Axiom entry
for A with no argument) I for A <- B

V

I Ax.iom entry

I :£or A <- C

i.ullowlng

the ax·oms

The backtrucklng routine is called £rom the

unlflcution routine and from compiled axiom routines

- 95 -

when a £allure occurs. -�he basic functions per:formed in

backtracklnµ are:

(a) Determine the environment to which the proo:f

must "backup" and reset -the - current

environment pointer to this environment. This

environment is -cal led the

Reset the :Cree pointer to free

al. l environments subsequent to the .:failure

e nv lronmen t c Adjust the pointer to

change the si �e of the 1:ailur-e env l ronmi.:�nt

(the next axlom may need an

llst o1 d1:fferent size).

instantiation

(b) Remove the e:f:fect o:f all substitutions made

since the ±allure environment was activated.

(c) Re load the p1'cvious .failure environment

pointer :from the f:ailure environment.

(d) Load the :failure pointer :from the :failure

environment and return either to the

interpreter or the compiled axiom routine.

The addrf!SS o:f the current failure unvlronmen-t

(l.e the address 0£ the environment to whlch the proo±

must 11 backup"), ls always contalncd

- 96 -

in the :fal lure

register, RFAlL. On entry to an axiom this pointer is

saved in thB new environment so that .it muy be est,:red

on backtracklng(step (c) above). The processing o:f an

axiom ma� or may not reset the :fc.ilure environment. I:f

the last axiom :for a given p�edicate name and number 0£

arguments ls belng processed, the failure environment

pointer is not changed 1 _ since no new alterna�ives have

been introduced. On the other hand 1£ the axiom is not

the Last then the £allure environment pointer ls reset

to point to the current environment and the ..£allure

code/pointer in the current environment is set

appropriately.

In order to remove the ef:fects o:f the appropr�ate

substitutions during backtracking, a record is kept o±

substitutions. Thls record takes the .form o:f trace

entries, each o::f which contains the address o.f the

value cell which was set by a substitution. To 0 undo 11

the substitu�ion corresponding to a �race entry it is

necessary only to set the value cell indicated by the

entry to 11 unassigned 11 • When backtracking 1s performed,

the list o:f truce entries is processed and all

substitutions made since the activation of the £allure

environmen� are erased. There ls no reason to reset the

- 97 -

vulue cells in the faitore environment u.nd subsequent

environments since these environments are freed in the

bucktrucking process. Consequently, trace entries are

not gen·.;ra ted :for . ass lgnrnent s into the failure

environment and subsequent environments. Fur this

reason, when unifying two variables, the substitution

is always performed so that the mryst recently crE!ated

value cell ls modi. :fled. This cause�:.. a ·traco entry to he

KCnerated only when necessary.

Each trace entry occupies one word. Trace entries

are organized in bloc.ks which are pl.aced in the

environment stack. The first entry in a trace block

(1.e -t.he entry with the lowest address} is a special

entry called This entry points to the

top oI the prev.lous trace block, in order that the

backtrack roui:lne can process each trace entry in turn.

The f'ollowinµ; diagram lllustru.tes the structure!

- 98 -

Trace Block B

• • • • -e •• • • • • •

Environment D

...... . ·-··

Trace Block A

.....

Environment A

Jtrace I
1 entryl
1------1
l link J
I entryl----
1-----1 I
J I I
J I I
l I I
1------i I
ltrace l<---J
I entryl
J------1
l trac<.� I
1 er-try}
J-----1

l t ink I
I entryl----
1-----l I
I ! I
1 l I
I I V

• • •

Trace block A contains entries

Low{_�r
Addresses

V

-for substitutions

made after the activation o� environment A and be:fore

the ac-tlvation o:f environment· B. Xnterlacing -trace

blocks and environments not only uses one stack Instead

o:f two, but it also provides an implicit record ol'. when

each trace entry was

activation o.£ axioms.

processes on l)' the trace

greater than the address

since t h<.�s e entries were

created, relative to the

The backtracking routine

entries whose addresses are

of the failure environmen�,

created after the "failure

envlronment. The address of the top o:f the most recent

- 99 -

trace block ls rnalntalncd in register RTRACE.

Each iden t l :f lEH"' used .in the active workspace

(either as an a tom c.�r as a skeleton identl£ier) is

entered ln the symbol ·table when the identifier is

:f h•st encountered. The symbol table

identifier is

the value of

called a Etring descriptor

the identifier, as well as

the value. A-J:.ter a string dcsc�iptor has

:for a given ldent111er, al�l subsequen--t

en-try :for an

and contains

the length o:f-

been creu.ted

re.f erences ·-to

the identifier are made via a pointer to the string

descriptor. Consequently the values o:f two identifiers

are equal 1� and only i:f the string descriptor pointers

are equal.

When an ldent1£ler is encountered in the input (or

created dur lng e.)(ecuti on using the STR.ING predicate), a

search ls made to see i:f a string descriptor exists £or

the ldent if ier. If the search fails then a new

descriptor is created. This search-and-add procedure

is per£orrued by the HASH routine.

- 100 -

The symbol table search ls made usl ng h.:�sh chains.

HA�HHEAD ls u vector of 1.1..nk entt"ies. The value of an

ldentl:fler is hashed (using the · HASH macro) to give an

integer x. The link entry indicated by HASHHEAD(x) ls

selected as -the head o:f a chain of string descriptors

to be searched.

Each

data!

string descriptor contains the

the value o:f the ldenti:fier.

the.length o:f the va�ue.

the attributes o:f the ldenti£icr.

- a link entry.

1:oll.owing

An ldenti�ler can have any 0£ the :following attributes:

PREFIX - the identi.:fier ls declared as a

pre-fix operator.

SUFFIX - the ldenti:fler is declarf.'!d as a

su"i:.:flx opt�rator.

LR - the identi:fler ls declared as a left-to-

right in1lx operator.

RL - the identifier is declared as a right-

to-leLt infix operator.

SPECIAL - the ldentl£ier consists o� one or

two special characters and need not he

- 101 -

separated :from its operands hy a blank

when used as a prefix, su11lx or Jn'flx

operator.

For ldentifi::ers consistjng of one special

character, t be SPEC J.AL at t rll>u te ls sc�t when the st r lng

desc r i pto1• ls constructed by the HASH t"outine. The

SPECIAL attribute is also set .tor an iden t i.f ier

conslstlng of two special characters when an operator

declaration is made £or the identifier. The other £our

attributes are rnulntained through the addition and

dele�lon 0£ axioms 1or the OP predicate.

A 1.i.nk £n..1£X. is a pair -0:f the form (cocte,pointer).

The possible :forms o� this pair are:

(LAST,-)

(DIRECT , po int e r)

(INDIRECT,polnter)

1£ the code is LAST then this ls the last entry in the

chain. I:f the code is DIRECT then the pointer

addresses the next string descriptor ent1.'y in the

cha.in. If the code is INDIRECT �hen the pointer

addresses a predicate table entry :f.or -this string

descriptor. The predlcdte table entry contains a link

entry wh.ich cont lnucs the hash chain. The link entry in

- 102 -

the predicate entry <.an have the .form (LAST,-) or

(DIRECT,polnter).

Each string descriptor can have any number o:f

corresponding predicate entries, organized in a queue.

Predicate entries may be o:f three types; namely a

system type, an axiom type or a routine type. The axiom

and routine types e�ch con�ain a number o.f arguments

:field and a pointer. The number o:f arguments :f le ld

indicates that the entry applles

the given laentlf:ier

ar�uments. For an

and

axiom

the

type

to the predicate with

indicated number o.:f

entry the pointer

indicates the :flrst entry in an axiom queue. Por u.

routine type entry the pointer indicates the routine

en-try sequence. Predicate entries of the system type

are distinguished by a numbe� o1 argumenis field which

ls negative. System type entries are used to record

operator declarations

wlth the ldenti£ler.

and file ln:formatlon associated

The lnitla�izatlon routine acquires one large area

103 -

£rom which all storage requiremeni;s are su.tlsfied. The

two principal requlremen�s· :for storage are for the

The environment

stack starts at the bottom OI the acquired region and

gro�s upward, while the global area starts at the top

o:f the region and grows downward.

allocated in -the global area are:

(1) string descriptors

(2) axiom entries

(3) axlom rou�lnes

The mal n elements

The limit p�inter :for the environment stack ls

maintained in ESTKEND. ESTKEND is always set to he at

least one environment size below the actual limit since

the routine entry sequence saves several. pointers in

the new environment be£ore checking £or space. Normally

ESTKEND is maintained we1.l below the bottom o:f. the

ulobal area to .reserve space :for ·the error handling

axioms, which will be called l:f the environment stack

reaches ESTKEND. The iollowing diagram shows the

various areas.

- 104 -

Global
Area

Reserved Area 1or l

Error Recovery I
---------------------<-·--ES'.· KEND

l 1
J Free Area J

I I
---------------------<--- RI:: REE

J Environment

I Stack
1

I

The top of the environment· stack ls also used

temporarily for write entrles(in TMPUT) und :for parse

stack entries{ in TMGET) • During uni:fication a

unifica�lon stack is created which starts at ESTKEND

aud gr·o\\'S downward,. Since siring dcsc ripto.r•s can be

allocated in the global area during parsing, RFJ<EE ls

temporarily set to ESTKEND when reading terms In order

to prevent string descriptors £rom overlaying the area

containing variable names and the Input term skeletons.

As described earlier, axioms are stored

are queued £rom predicate entries. Each

- 105 -

axiom entry contain . the following data:

a link to the nex"t entry or a 11 last" fl·,g,

the term word and skeleton descriptors

representing the axlom,

- a count of the n�mber o� va�ue cells needed

£or the axiom environment�

- a Hfree link 11 •

The ":f.ree link" ls used to maintain a special queue of

deleted axioms. When an axiom is deleted the s1•ace may

no� be immediately £reed since constructed terms ln the

proof may re:ference the axiom or suhterms of it. In

order to :recover space from deleted axioms it ls

necessary to de1er the freeing o:f the axiom space. An

axiom entry is queued on a special deferred free queue

when it is deleted. When a proo£ is completed and the

supervisor is about

ent1"ies on this queue

1treal" -1'ree queue.

to read another goal. or axiom,

are then tt"'ans:ferred into the

- 106 -

All axioms and terms in the system are read using

the same mechanism, a stack driven parser. The parser

uses two separate stacks, a token stack an<l a term

stacho The interna1 representation for the term being

parsed ls constructed on the term stack. The term stack

can consequently contain zero or mo.re skeleton

desc r.i pt ors .. The parse stack contai11s tokens and is

used to control the parsing process.

The £irst step in a term is the

"tokenization o.:t: the input. The TKGET routlnc is called

to return a token on 1:he top 0£ the parse si:acke

token rt�turnt�d is one o:f the :followlng ·types!

<id£�nt i:f lcr>-,

<term> ,

<comma>,

<left parenthesis>,

<right parenthesis>,

<end of term>.

The

The token 0£ type <term> ls returned for int<�gers and

variables.

The parse stack entry descrlhing the 1:oken

107 -

a two sy.nbol look ahead and also exarninin� operator

dt?c la rat l on Se The TMGET routine calls the RESOLVE

routine when other reductions may be required. RESOLVE

ls called 1.f the top of the parse stack ls neither a

term nor an identi£ier.

The RESOLVE routine makes reductions corresponding

to the following BNF- rules.

< t e rm> : :: = (< t P. rm>)

<skeleton>

<skeleton>::= <Identifier> (<argument list>)

<term> <ln�ix operator> <term>

(pre£lx operator> <term>

<term> <su1�ix operator>

<argument lis�>::= <term>

<argument list> , <term>

The RESOLVE .rout inc determines the applicable

reduction (i:f any) by examining the type and pr.lo.ri ty

o:f the top three stdck entries. Wlu�n a re duet ion

produces a skeleton, RESOLVE builds an appropriate

skeleton descriptor on the term stack. The term word

:for the descriptor is placed in the stack en t r·y

produced by the reduction.

- 109 -

All terms and axioms are written using the same�

mechanism. T�fPUT ls a stack-driven routine which writes

out terms using the current operator declarations.

Terms are written in a minimally parenthesized :form.

Consider as an example the term • (A, { +{ -{ h, ! (C } .) , D))

with the following operator declarations!

OP(•, RL-, 100).,

OP(-,RL,150).

OP(+,RL,200).

OP(!,SUFFIX,250).

We begln by processing the ou-ter skel.e-ton. This will be

written in the .format 0
_

.
_

11 where denotes a subterm

whose :format has not yet been determined. The :first

argument of the outer skeleton ls processed and the

output format is

subterm. This

now "A• "•

suhterm wlll

We now process the

be wrl ttcn in

n+u

in:fix

notation. To decide whether to parenthesize the subte.rm

we examine the and the rl.g.h.i

In this case the le:f t priority

context ls 100, the priority 01 the in:fix "•"• In

�cncral of a subterm is

- 110 -

defined as £ol1ows:

(1) I::f the subterrn appears immediately to

right of an ln:fi.x operator then the

priority context ls the priority o:f

lnf·lx operator.

{2) I.f -the subterm appears immediately to

right of a pre:fix operator th<�n the

priority context is priority o.f

pre:flx operator.

(3) Otherwise the le1t priority context ls 0.

the

left

i hat

-the

le:ft

the

Slmi lar·ly we define the rl.£;hl Q£i ori_!y £.Q.ntc2;..! of a

subterm as follows!

(1) lf the subterm appears lmmedlatel.y to the le�t

of an infix operator then the right priority

context is the priority o.f the In:fix

operator.

{ 2) .Lf the subt erm appears immcdla t e 1.y to the left

oi a suffix operator the the right priority

context is the priority of the sui':Cix

operator.

(3) Otherwise the right priority context is O.

- 111 -

In this example, the right prio.rity context o.t the u+u

subterm is O. Since the p�iority o± the i n.i ix u+u is

greater than both the right and le:ft priority contexts,

this subterm need not be pc1.rentheslzed. Thus the

output will have the :format 11 A._+_u and we next process

the "-" subterm.

Tb is suh-te rm has a le:ft priority context o.I 100

and a rluht priority context o:f 200. Since the infix

n_n has a priority of 150, which is less tha.n 200, we

must parenthesize this subterm. The output now has

.form.at "A.(_-_)+_u and we next process the f'irst·

argument o:f the 0-" which is an atom. This gives an

output :format o:f "A.{B-_)+_u. We next process th�

11I(C)" sub tc rm,. The "t 11 ls a suf:fix operator. To

determine whether to parenthesize a term .in sufflx

..forrna t, it ls necessary to examine only the le-rt

priority

context

context. In this case the le:f t priority

is 150 and "?" has priority 250, so

parentheses are required. The output .format ls

II A. (B-_ l)+_II• When -the remaining subterms

processed we hd.ve the ::final output: 11 A. (13-C !)+n u •

This exampl(� demonstrates the basis o:f

"minimal parenthesis" algorithm developed .:for

112 -

no

now

are

the

this

implementation. Prefix subterms were not discussed but

u.na.logo\. ,ly to suf:fix subterms: Athey are treated

subterm ln prefix f ormat needs to be parenthesized if

the right priority context is greater than th� priority

of the pre:flx operator.

This basic method is re£1ned in oPder to .handle

l.e:ft-to-right and .r lg ht- t o-le .f t infix operators.

Firstly all the operator priorities are multiplled by

four so th.at any two distinct priorities di.f:fer by at

least :four. For ln:flx operators two priorities are

created! a right priority and a l e:ft priority .•.

Intuitively, the left pr iority is the priority visible

:from the le.ft and the ripht prlorlty is the priority

visible :from

priorities o:f

the

two

right.

.ln:flx

Thus, in comparing the

opera. tors to declde on

parenthesizing, the leit priority o� the right one is

compared with the right priority of the le£t. For both

rlght-to-le:ft and le:ft-to-rlght operators the left

priority ls the same a s the priority. For a· right-to-

le:ft operator the

priority. For

priority .is

a

one

right priority is one less than the

le:ft-to-right opera.tor the right

more than the p.riority. This

refinement for infix operators extends the basic method

- 113 -

to handle le£t-to-right and rla;ht-to-le£t npnrators

cc..rrectly, when two adjacent in.fix operators have equal

p.rlorlty.

The term writing routine is ef�ectively a stack-

driven tree traversal program. The stack conslsts o:f

zero or

represen.ts

more

a

�l..ig

subterm o:f

Ea.ch write entry

the or.i gi na l term (or

equivalently a node in the tree representation o:f the

term). Each entry contains the £bllowing £lelds:

the substitution environment o± the subterm

the current argument in the - a po.inter to

argument l.ist o:f the subterm slc.e let on

descriptor

- a count o:f the number of: arguments which

remain to be processed in this subterm

the leLt priority context

the right priority context

- a .flag indicating whether or not the

subterm is parenthcs.ized

flags indicating if the subterrn is being

written in in:fix, prefix, su:ffix or

b�slc skeleton notation

114 -

This section describes many o:(the more

slgni:flcant design

system. An attempt

decisions made in i mplemcnt ing th�"

is made to outllne the motivations

:for the various decisions and

were considered. The :features

decisions :fall into two groups.

the alternatives that

a:f feet ed by the desit.!;n

Languag_g 1eatures are

readily visible to the user o:f the system.

:!fUl.1!!.!:Qfl. are not read.ily visible but have implications

��garding e�Liciency and ease 0£ implementation. The

major :features o-f both types are discussed in the

1ollowing sections.

It ls c'lear :from experience with PHOLOG that the

ability to declare operators as infix or prefix ls very

useful.. This :feature is retained

unaltered :form. A single operator

- 115 -

in an

may

essentially

have both a

pre:t:lx and an in£ix declaration. Thls dual declaration

ls alloweJ because o:r .its obvious application £or

operators such as n+u and "-"· The u(_n operator is

also used in both pre£ix and inflx £orms to represent

�oals and axioms respectivel�.

In some situations su1£ix operators allow a more

natural notationo Consequently suffix declar�tions arc

also supported. In order to prevent ambigous

representations and to simplify the pa.rsing of terms

the restriction is imposed that a su.f.fix

not simultaneously be declar�d as ln£ix or pre�ix.

To provide a more i'lex ih le user inter.i:ace,

operator declarations may be accessed, added or del0ted

by manipulating the OP built-Jn predicate.

A 1lexible Iorm o± input £or terms is provided. A

term may span several input lines or se veral terms may

be input on one line. Since ini'Lx operators a.re

allowed it ls necessary to indicate ihe end of dn input

term by using some sort of delimiter. The e nd-of-term

- 116 -

dellmlter ls chosen to be u,. u. The character "••' as the

last character 0£ an input line is treate� as an -nd-

of-term. Tb e character "•" :followed by a blank marks

the end of. a term, wherever it occurs in a �ine. This

imposes restrictions on the use o :f "• n as an ope rat o .r:

it may not be the last character on a line and may not

be :followed by a blank� Alternatively a specjal symbol

could have been reserved as �he �nd-0£-term delimiter

and disallowed as an operator. The obvi6us cho lee 1'or

such a special character was 11;", follow.ing its use 1n

other languages, but this would have disallowed the use

o:f 11 • n
.. as an operator.

A variable is· represented by an asterisk :foll0wed

by the variable name�• The use o:f anonymous variables

varl ables with no name) ls introduced

abbreviate the notatlon in certain cases. The varldble

name may be any of a sequence o± letters and digits.

When a term is written the variablc:?s in the term are

given names according to their canonical numbers (I.e.

*1,*2 etc.). This gives the rnotlva·tion £or allowing

variable names consistlnu solely 0£ digits.

An atom or identifier is represented by a sequence

o:f characters enclosed in apost.roph�s. ln certain cases

- 117 -

the e nc l o s i r:g upostrophes may he omitted. The use o:f

apostrophes allows the use o:f punctuation characters

and special characters in atoms and .identi:flers,

Obviously, the apostrophes are made optional to yield a

briefer and more readable syntax.

Since a large number of printers and in te rac·t i ve

terminals are unable to deal with lower cas ·, letters,

lower case lette.rs are not allowed ln unquoted

identifiers. For -this same reason the dt�:fault ls for

alt input -from the terminal to be translated to upper

case. To maintain f�exibility, a �acility is provided

to avold the transla-tlon (i..e. the CONTROL predicate

with the key LOWER) •

.5�4 The Jsegres�n:t.t1.tlon of Axioms and Goals

In the original Marseille version o:f PROLOG, an

axiom ls represented as a sequence o.f signed

literals(e.g. TP-Q-R). There are several disadvantages

to this notation. Firstly the n+n a.nd "-" signs give a

deceptive indication of generality, but add nothing to

the power o� the language. The inference rules used by

- 118 -

the PROLOG proof procedure can be explained . using the

si ·.;pler an<l more natural rules o:f implication rather

than the mo re general rules of resolution.

In this lmplementution an axiom is represented as

an lmplicatlon(e.g. P(-QSR). This representation h:..:i.s

the advantage that an axiom can now he interpreted in

an obvious wa.y as a term where 11 <-" and u .8" are

declared as in.fix operators o:f the appr•opri.ate

priorities. Representing an axiom as a term of a

certain form yields several beneLlts:

(a) Axioms and terms can now be read and written

using a common mechanism.

{b) Axioms can be easily rna.n i pu lated without

resorting to a special list format.

(c) Representations for alternation and negation

can n.ow be easily included. Lf the

identifier t -, . is declared as a prefix

operator o� appropriate priority then negated

li�crals can be used.

e.g. A<-BS,C.

,c(-ESF.

(d) Infix, prefix and sufflx £orrns or predicutes

can be used since axioms are just special

- 119 -

cases o:f terms.

e.g. If LIKES ls declared as infix then

A LIKES B is a valid axiom.

When an a . .xlom ls invoked in a prooz, the right

hand side or body of the axiom becomes a subgoal in the

proo£. Because 0£ the similarity of £unction between a

goa� and an axiom body, a similar format is chosen for

both.

Examples of goals are:

<-A.

<-F(*X)&G.

The ope.rator 11 <-" is declared as prefix so that a goal

is also a

advantage

term. This

that goals and

without

notation has the further

axioms are now easily

depending on context. distinguished

Consequently

input.

they may be :freely interspersed in the

This Implementation Includes some o:f the built-in

predicates o:f the original PROLOG in a modi1ied ±orm.

- 120 -

Other 0£ the original predicates are omittud entirely

a.nu some new built-in predicates are included. These

changes were made in an attempt to achieve the

:following goals!

{a) a. mo re powerful and unl:form system :for

manipulating axioms and opera.tor

declarations. An attempt was made to make the

language more "sel.f-conscious", that is, to

provide the ability to access and change all

aspects of the PROLOG environment £rom PROLOG

programs.

(b) improved access to external £iles. Any number

o:f :files may be accessed by name. The

orlginal PROLOG system provided a s.iu�le

£ixcd lnput £Ile.

{c) more "meta" facilities. In particular

ability to determine the type o� a term (I.e.

variable, skeleton, atom or lnte�er).

(d) mo re general f'aclllties

PROLOG workspdces.

provided a simple

The

SAVE

i:or manipulating

origlna·t Pi<OLOG

.function only. The

extensive workspace £acilities described are

based on similar .funtions provided by the APL

- 121 -

l anguaP-e.

(e) improved :facilltles .for testing and error

recovery. The ERROR predicate ls provided to

allow user controlled display oL ln�ormatlon

at the point of an error. This :feature is

slmltar to the ON ERROR £acllity of the PL/I

language.

5�6 Predicatesi Skeletons an.g Ih£�£ Arit�

A likeleton is determined hy a skeleton identifier

and d number 0£ arguments. The question arises! Should

a :fixed number o:f arguments be associated with each

identifier? More speci�ically: Is it appropriate to use

the skeletons F(1,2) and F(1,2,3) in the same proof.?

Placing restrictions on the number of arguments would

have the advantage 0£ detecting certain user errors

(such as typing F(l.2,3.4) instead of' F{l.2,3,4)).

llowever the restrictions �ould preclude the nu-tural use

oi: 11+n and n_u as both unary a.nd binary operators.

Also, 1-t ls di ff lcu l-t to determine the 11 correc t 11 number

of arguments £or an identl�ler without introducing some

- 122 -

form of declaratlo.·.s. Primarily :for these r.:-Hl.Sons it

was decld�<l not to assoclate a speci.f.ic number o.:f

arguments with a skeleton identlfler. A slmllar

discussion applies to the use o:f a predicate identi�ier

with various numbe rs o:f arL��men ts .. The simpliclty and

use:fulness of "optional arguments" is demonstrated by

many o:f the built-in predicates prov idcd, in this

implementation .. The .reduced facility :for e.rror

detectlon ls alleviated by the provision o:f the NOAX

option in the CONTROL bui�t-in predicate.

The design o.:f in�ernal :features is j nfluenc(:�d by

two considerations: e:f:ficiency and ease o:f.

implementation. The e:f:flcient and elegant structure

sharing_ method :for representing terms, used in

Marseille implementation, is employed with no maj 01�

changes. This representation also allows the use o:f a

stdck for axiom environments.

An urea, cdlled the global arua, is also required

for permanent data items, such as axioms and string

123 -

descriptors. The g•. ubu l area and the env ironme11 t stack

are al loca te,d at opposite ends o:f a common area and

grow towards each other.

Ce.rtuln substitutions must he recorded as they are

ma.de so that they may be "u�done" by backtracklng. To

this end it is necessary to save the address o-f each

value cell in whlch a substitution was made,,,. Thus we

need to accumulate u list o:f value cell addresses or

tracE:� entries. When backtracking ls per:formed it Is

nec(.:ssury to determine all trace entries whlc� have

been created since the creation o:f a given axiom

env lronmen-t. To provide a record o.f the time of

creation of trace entrles versus axiom environments and

to simplify storage management, lt was decided to place

the trace entries on 1:he environment sta.ck.

An early decision was made to support a mixture o�

compiled and interpreted axioms. It was decided that

this :f aci li ty merged the best :features of. convenient

program development and e:f:flclent execution. The

provision o:f thLs mixed �eature influenced the :format

chosen ±or axiom environments.

For an axiom interpreter lt is necessd.ry to record

in the environment, the next axiom alternative

- 124 -

availablc(ln case Ji 'f::1.i lure) and the remaining goal

conjunction 0£ the current axiom (in case of success).

Each 0£ these two i�ems can be recorded in a three byte

add1•css .. For a compiled routine it is necessary to

record the success return address and the failure

return address. These too can each he recorded in a

three byte address. To maintain reasonable space

e££icicncy It was decided to use the same two words ln

the env lro nr,1ent to record the two items :for the

interpreter a nd the two items for compiled codeo The

high order byte o-f each wor<l would contain a code

indicating the type {compiled or Interpreted). A code

is used in both words to provide increased £lexlbility:

when the interpreter processes the last literal o� the

axiom body, 1 t :flags the success pointer with the

"compiled" code and sets the success pointer a

routine wh.ich immediately "succeeds" .

Backtracking could have been handled .in any o-f

several ways. The current environment could always

contain a polnter to the previous environment on the

stack. Then backtracking could trace back through the

environments on the stack until an environment with a

remaining alternative was found. It is more ef:flcient

- 125 -

to have the current environment contaln a poi.n ter to

the most recent environment with a ·rernai ni ng

alternative, so that the appropriate envlronmcnt can be

located in a single step. To facilitate this, a

register pointing to the current £allure environment is

maintained. Thls register also allows u more e££1cient

handling of. trace e.ntrles. It is necessary. to trace

only those assignments into value

current failure environment since

erase the failure

cells below

back tracl-. ing

the

will

An atom is represented by the address 0£ a symbol

table entry. The alternative o� representing each atom

by a separate strlng was rejected. This alternative

would necessitate time-consuming comparison 0£ strings

during uniilcation. Hashing seemed to be the only

reasonable access method £or a symbol table. Since the

number of atoms in use in dl£Lerent PROLOG workspaces

varles a great deal, th(� method of hashing into a

symbol table or "fixed size was rejected. The use o:f

hash chains was deemed the best choice. To fucllltate

parsing of input and the implementation of the STRING

built-in pre<lica·te, the muximum length for an

ldentl1ler was set at 256 characters.

- 126 -

o:f the / 370 was a strong The meruory architecture

in£luence in d�termining th� representa�ion £or terms.

The storing o:f a twenty-:four bi� address ln a thirty-

two bit word allows ef1iclent representation of a term

usli..g an eight bit code and a twenty-:four. bit address

or number. The selection o:f the codes :for the :four

types of terms W'•..lS also based on efficiency

consldera-tions. The e:f:ficlency of �he dere£erencing o:f

terms is very important and depends on -the rapid

recognition o:f variablebo Consequently the type code to

represent a was chosen so that the word·

representing a variable would be negative and the word

representing any other type 0£ term would be positive.

Since skeletons vary in size, it seemed necessary

to represent a skeleton term by a pointer to some sort

o:f skeleton descriptor. This descriptor would need to

con�aln �he following ln£ormatlon:

-the skeleton name

-the number 0£ arguments

-the arguments

The arguments can each be represented by a sinHlc term

word. The skeleton name can Le represented by a twenty-

four blt pointer to a symbol table entry. It ls

- 127 -

desirable to make the r�presentation for a skeleton an

integral number of words in size. Consequently

choices open are to restrict the maximum number o:f

arguments to 255 and record the value in elght bits or

,.

to reserve an extra word �or the number o� arguments.

The limit o:f 255 arguments seemed reasonuble, so that

alternative was chose:--1.

In a PROLOG workspace, various, pieces o.f

in:formation are associated with identl.1'.i.ers. 'i'he

ln�ormatlon which can be stored for an identi.fier can

inc�ude all or any of the �ol�owlng:

opera�or declarations

axioms

routines (:for built-in predicates and

compiled axioms)

:file information

in:formatlon .for the CONTROL hui l·t-in

predicate

It must be possible to access this in:forrnation from the

string descriptor :for the identifier. Conseque1rtly i--t

was decided to provide :for the chaining o:f predicate

entries :from string descriptors. Instead of reserving

space ln each string descriptor :foi-• a pointer to a

- 128 -

predlco.te entry chain, the technique o.f. Indirect

pointers described in 1.!..a .. �.:L.mbol To.h1e Or.,ga..niz.u.tion Wt1S

used.

It was anticipated that compiled code routines

would need to access predicate entries ctit'ectly to

obtaln the addresses o:f other routines.

the predicate entrli.•s are organized in

AccordingJ.y,

t he .12r.,g£!l.£.s!.i£

The entries may be accessed uslng an offset

from the table base. In normal execution a :fixed

register ls reserved j:-_,r the predicate tabl-t� base. It

is assumed that the maximum predicate table size will.

be restricted to 4096 bytes, in keeping with the limit

on base-displacement addressing on the /370. This limit

ls not yet Imposed since the compiler has not been

implemented.

It was decided to provide the implementation with

a :facility f'.or programmable error recovery. This

required the reservation of space on the stack for the

execution 01 user written error

a stack over£low. Consequently

is implemented to provide space

overflow is detected.

- 129 -

axioms in the event oL

a reserved space system

£or stack growth i� an

mind, the following pr�dlcatcs are suggested.

PROVABLE(*X}

This predicate succeeds i:f some instance of *X is

provable from the axioms. This predicate could be

implemented by proving *X in the usuc1.l manner and

then erasing th · proof oI *X and any substitutions

made during the proo:f. This predlci.tte can be

defined in the existing implementation using the

meta variable fa.cl ll ty and the slash. The

provision 0£ this and some 0£ the following built-

in predicates would standardize the predicate

names used :for several common £unctions. This

standardization would also allow a compiler to

recognize certain standard predicates with defined

characteristics and to optimize accordingly.

UNPROVABLE{ *X)

This predicate succeeds if no instance of

provable ::from the axioms. Note that no

instantiation is performed. This predicate can be

def'lned in the existing implementation using the

meta variable .facl Li ty and the slash. PROV.ABLE

- 131 -

could he defined by!

PROVABLE!*X) <- UNPROVAllLE{UNPROVABLE(*X)).

UNlFY(�:X,*Y)

This predicate succeeds l :f >:i:y �re

uni :flab le. I :f the predicate succeeds then *X and

*Y are unl:fled •. This predicate could be de£ined in

the exlstlng system using the axiom UNIFY(*X,*X).

UNIFIABLE(:,;{_X, *Y)

This predicate succeeds if *X and

unl�lable. No unification is performed.

DUPLICATE(*X,*Y)

*Y are

This predicate succeeds i:f *Y can be unl£ied with

a copy o:f *X• Hore speci±ica1ly, a copy 0£ �he

term bound to *X ls created with the variables

renamed. DUPLICATE is closely related to the above

predic a tcs.

PROVABLE(*X) can be defined by:

PROVABLE(*X) <-DUPLICATE(*X,*Y)S*Y•

UNIFIADLE(*X,*Y) can be deflned by!

UNIFIABLE(*X,*Y) <- DUPLICATE(*X,*Z) 6

- 132 -

DUPLICATE(*Y,*Z).

INSTANCE(*X)

Tl.1 J. s predicate ls proposed as a means of'

Instantiating all variables in the term *X• The

ieatures appropriate for a predlca�e 0£ this sort

are not .readily apparent. One suggest.lo,-'! is that

in this :form ,the variables are uni1ied with the

integers 1,2,a, etc., to provide a 11 most specific

instance" of t.he term. A more general fo1·m might

be INSTANCE(*X,*Y) where the term ,:,y is used as a

model .:for the instantiatlon o:f -the variables in

the term *Xe For instance• i:f *Y is bound tc V(*)

then �he variables in *X would be instantiated to

V(l), V(2), etc. The instance predicate would he

use:ful in a compiler £or compiling PROLOG axloms

directly into

general 0 meta n

code. It could also be used as a

Lacllity for �erms. For example,

it could be used to replace the MKG
T

IOUND predicate

in WARPLAN(9).

CONDENSE

This predicate could be implemented as a predicate

- 133 -

COUNT

wlth a pragma�ic slMni:ficance, but no semantic

sl�nJLicance. Specifically, it would recover F0acc

on the environment stack by causing a p ot"' t ion o.£

the proo:f to be condensed. The desirability o.f

such a 1:cature is clearly dependent on the

lmplementat.ion.

This pred.ica-tc is proposed as a means o.i: providing

l.oop controle It is suggested that four �orrus 0£

this predicate be provided�

COUNT - ·this predicate succeeds when :first

invoked and when backtr'acked too

"'."fhus it can be used to per£orm

looping. The loop can only be

terminated -through the use o� RETRY

or /.

COUNT(*X) - same as £or COUNT but when first

invoked *X is instantiated to 1 and

back t rac k.i ng causes to be

instantiated to 2 then 3 etc.

- 134 -

COUNT(*X,��) - same as �or COUNT(*X) but when

:first invoked,

to *N (*N mus-t be

instanti�ted

bound to an

integer). B�cktracking causes *X

to he ln�remented as be1ore.

COUNT(*X, �'N, *M) - same as ±or CO�NT(*X,*N)

hut backtracking will only succeed

whlle *X ls less than or equal to

*M•

integer.

must he bound 1:o an

SUBTERM(*SKEL•*INDEX,*RESULT)

This predicate can be used to select the argu1nent

oi a skeleton with an appropriate index. For

example the ca1l <-SUBTEHM(F(l,8,27,64)1 3,*CUBE)

will succeed and wll1 set *CUBE to 27. Similarly

the call <-SUBTERM(F(l,8,27,64),*I,64) will set *I

to 4 (the index of the

unifiable with 64).

CODEAX(*X)

first argument which is

This predicate succeeds if there ls an axiom ln

- 135 -

coded .form (l. : ie �or.1pl led) w l th the same predicate

name and number o� arguments as the term *X•

ls intended. for user written theorem provers, to

al; ow them j'ul l access to the PRO LOG axioms and

coded a.xloms.

CODEAXN{*X,*N}

This predicate succeeds if there is an axiom in

coded £orm (1.e compiled) with the predicate name

given by at�m *X and with the number oL a1-guments

given hy integer *N• This predicate is incl.uded

�or uni�ormity with the AX and AXN predicates.

Built-In predicates might

:following a.reas

also be us.e:ful

adding and deleting compiled code axioms

more power1ul library predicates

ln

inter£aclng to subroutines ln other Languages

-the

providing special tracing and debugging features

more genera� £ile capabilities

- 136 -

Resolution has been shown to combine

simplicity and power of expression when used as a data

base definition/query langua.:;e. In the practical sense

1:hough, this and previous PROLOG implementations have

not provided a realistic means for manipulatLng a data

base 0£ signl�icant size. To extend �he implementation

to include this �acility, several �eatures ne�d to be

c onsidered. First it wl 11 be necessary to <lev·Jlop a

technique . .for storlni� axioms on an external storage

medium. In this implementation, the actual maximum

size .for the axioms and work areas o:f the active

workspace is 16 megabytes, though the practical max�mum

ls considerably �ower. I� some axioms are to be stored

11 1nterna.lly" and others "externally H then a criterion

must be established to determine the storage mode £or a

given axlom. This c ould either be determined

automatically by the system or speci�led by the user.

For instance a MODE built-in predicate could be

provided to allow the user to specify an "internal" o.r

11externdl 11 mode ::for any pre di ca te name. Another

£eature whlch is desirable £rom an efficiency point of

- LJ7 -

view is prov: sion or 11 unordered 11 axl o.,1s • For

example, consider a data base consi:.;ting entirel.· of'

axioms of the form NAME(xxxx) where xxxx ls an atom.

To determine if. an atom 11 is u. NAME" we do not want to

sea1�ch through all the "NAMES"• Clearly {\ hashing

technique ls desirable. This sort of' technique is

easiest if we do not need to re1uembe 1" ·the original

order of the NAME axioms. It might be desirable to have

a MODE predicate which allows the user to dc:f.ine an

11 ordered 0 or "unord�rect 11 mode t:or any predicate .,a.me,,,

Numerous other questions need -to be resolved in

order to provide an e.f:ticient and elegant data base

system within PROLOG. 6.4 Real Arithmetic

Arithmetic values ln this implementation are

rest·rlcted to integers. In many cases real arithmetic

would also be use:ful.

several dee.is ions must

reprc.�sentat ion .:for real

To include real

be made. The

constants must he

arithmetic,

syntactic

selected •

The uni:ficatlon. technique :for reals must also be

determined. The problem in this area ls the means ror

- 138 -

comparing reals,

l n.:..<lequa te due to

since st-rlct equu.llty

roun<lo:f:f err-ors. The

p.robably

built-in

predicates would also have to be modiLled and extended

in order to provide the basic arithmetic operations. A

£acllity 1:'or formatting output may also be required.

Support for real arithmetic does no-t appear to be

easy to provide. It may be that the added complexity

does not warrant the e1:'fort

imp"lementatlon.

£2.tli A Mo.re �llfil.f.i�ated PrQ.QI Pr.Q.cedure

The power of PHOLOG could be

11 1mprovlng" the proof procedure:�. The

required

extended

danger ls

:for

by

that

more elaborate proof procedures incur greater overhead

and require more complex data structures. Sue h changes

might eroli c -the very advantages or PIWLOG as an

e£fic1ent (and restrictive) theorem prover.

Numerous avenues remain to be explored in this

area. Extensions to provide "bottom up" and 11 bread1:h

:first" .facl llties need to he invcstif;atcd .i:urther.

- 139 -

This implementation cun be used to "mirnic n second

order :features by using certa.iL built-in predicates.

The provision of any true second order £acilitles needs

to be investigated.

- 140 -

The preceding sections have described the main

:fea turet· o:f thls .l mp le men tat i on of PROLOG. The

implementatlon has been completed as described except

for the built-in workspace predicates described ln ��§

P redl.ca tes ... This implementation was

developed on an IBM 370/158 using VM/C.MS. Some sample

pro#r�ms were used to compare the e£1lcicncy of �he new

implementation and the orig.inal

Marseill.e. The programs chosen

system �or plan generation(9). The

implementation rrom

involve the WAi<PLAN

Lirst set or times

compares the time required to load the axioms :for the

WARPLAN system. The next

times required to

two sets

solve

0£. times

the

1-�ive the

problems

<-PLANS(ON(A,B},START) and (-PLANS{ON(A,D),START)

respectively• using the axioms �or the blocks world as

described in (9). The comparison is based on seconds

o:f virtual central processor �l�e on a 370/158.

- 141 -

Mars 'ille Interpreter New Inferpretur

1---------------------1------------�-�----I
I ss. 2 I - � 40 I Load WARPLA"N

J---------------------1------------�-- ----!
Problem 1 I 2.12 J .16 I

J -----·----------------1------------------1
Problem 2 I 3 .97 J • 24 I

-------�---�-------------�--���--------

These tlme s give an approximate measure oi' relative

per:formance. They show an i.mprovemen t £actor ,>i' over 15

£or execution and over 100 :for the loading o� axioms.

No comparison 0£ the space cf-f ic iency o:f 1: he two

lmplementu.tlons has been a t tempt e:� ct • No s 1 gr· i £ 1 cant

dl:fferences are ant�clpatcd in this area.

Other more subjective evaluations remain to be

made. These eva�uatlons will be made by the £inal users

of the system.

It ls hoped i:hat this implement at ion wi""ll

stimu1-ate 1: be development of' the PROLOG language and

vi1l provide a base 1or �uture enhancements.

- 142 -

1. Al£red v. Aho and Je£frey n. Ullman: The Theory o:f

Parsing, Trans 1.a·t ion and Compiling, Volume I,

Prentice-Hall, 1972.

2. G. Battani and H. Me loni: Rappo1·t de D.E.A.

df In1:ormatlque Appliquee, Group,� d 1 Intelllgence

Arti�lc.ielle, u. E. R. de Luminy-, Universite

d•Aix-Marsellle, 1�73.

3. H. Coe_lho

Geome-t ry

and Le

Theorem

Pereira:

Prover, Dept.

GEOU: A PKOLOG

o.-f Artificial

Intelligence, Univ. 0£ Edinburgh, 1976.

4. M. H� van Emden: Programming with Resolution Logic,

Research Report CS75-JO,Dept� oL Computer Science,

Univ. o� Waterloo, 1975.

S. H .. ll. Enderton! A Mathematical Introduction to

Logic, Academic Press, 1973.

6. Nils J. Nilsson! Problem Solving Methods in

Art1£lcial Intelligence, McGraw-Hill, 1971.

7. Grant Mo Roberts: A Md.c ro Reference Manual,

Computing Centre, University of Waterloo, 1975.

8. P. Roussel: PROLOG Manuel d 1 Utilization, Groupe

- 143 -

d' Intelligence Ar-tl:flcie.lle,

Luml ny, 19'7 5

Marseilles-

Warren: WARPLAN: A System �or Generating

Plans, Dept. o.f Computational Logic Memo 76,

Edinburgh, 1974.-

- 144 -

152240

