AFFIRM Annotated Transcripts

Raymond L. Bates and Susan L. Gerhart, Editors

AFFIRM

Annotated Transcripts

Raymond L. Bates and Susan L. Gerhart, Editors

Version 2.0 - February 19, 1981
Corresponds to AFFIRM Version 1.21

USC Information Sciences Institute
4676 Admiralty Way
Marina Del Rey, California 80291
(213) 822-1511 ARPANET: AFFIRM@ISIF

Copyright © 1981, USC/Information Sciences Institute

The AFFIRM Reference Library

AFFIRM is an experimental interactive system for the specification and verification of abstract data
types and programs. It was developed by the Program Verification Project at the USC Information
Sciences Institute (ISl) for the Defense Advanced Research Projects Agency. The Reference Library
is composed of five documents:

Reference Manual
A detailed discussion of the major concepts behind AFFIRM presented in terms of the abstract
machines forming the system’s structure as seen by the user.

" Users Guide -
A question-and-answer dialogue detailing the whys and wherefores of specifying and proving
using AFFIRM.

Type Library
A listing of several abstract data types developed and used by the ISI Program Verification
Project. The data type specifications are maintained in machine-readable form as an integral
part of the system.

Annotated Transcripts
A series of annotated transcripts displaying AFFIRM in action, to be used as a sort of workbook
along with the Users Guide and Reference Manual.

Collected Papers o
" A collection of articles authored by members of the ISI Program Verification Project (past and
present), as well as an annotated bibliography of recent papers relevant to our work.

Program Verification Project Members

The USC/Information Sciences Institute Program Verificétion Project is headed by Susan L. Gerhart,
with members Roddy W. Erickson, Stanley Lee, Lisa Moses, and David H. Thompson. . Past project
members include Raymond L. Bates, Ralph L. London, David R. Musser, David G. Taylor, and David S.
Wile.

Cover designs by Nelson Lucas.

Special dedication to Affirmed, the only race horse named after a verification system.

This research was supported by the Defense Advanced Research Projects Agency and the Rome Air
Defense Command. Views and conclusions are the authors’.

Table of Contents
1. Proof of subseq transitivity.
2. The Knuth-Bendix Algorithm on Group Theory Axioms
3. Simple Send VCs '
4. Proof of Rotate Twice
Appendix |. Types Used in Proofs

1.1. SetOfElemType
" 1.2. SequenceOfinteger

10
16
38
56

&8

Preface
The AFFIRM Annotated Transcripts volume illustrates a number of features of AFFIRM. Each
transcript is prefaced with a short description of what the transcript deals with and other highlights.
All of these transcripts are from the current system as of the writing of this volume. Some of these

proofs are highly polished and many people contributed to them.

1. Proof of subseq transitivity

The main point of this proof, aside from its 'historical’ significance and that it fook us a week to

find, is the reasoning involved in disjunctions. The axiomatic definition of subseq is

s subseq NewSequenceOflInteger == (s=NewSequenceOflInteger)

s subseq (s1 apr i) == (s=NewSequenceOflInteger
or s subseq s1
or Last(s)=7 and Lesslast(s) subseq si1)

The creation of the axioms for subseq was stimulated by John Ulrich’s posing this problem to us

during his visit to ISI. The first axioms we came up with were like

NewSequenceOfInteger subseq s == TRUE
(s apr i) subseq NewSequenceOfInteger == FALSE

“ (s apr i) subseq (s1 apr i1) ==
(i=i1 and s subseq sl or s apr i subseq s1)

This formulation follows the way one would program subseq, chopping off end elements
. 'successively and comparing them. The proof of subéeq transitivity using these axioms was never
accomplished because we cbuld not find any wéy to use our usual Induction. (Moore accomplished '
this same proof at SRI using a rather complicated ordering and their generalized induction
mechanism.) With the change in axioms the following proof was easily bend. Gerrard Terrine of IRIA

pointed out to us that our second axioms have the seed of transitivity built into them.

There are some lessons here. First, you have to deci'de whether to have many induction methods
or just a few .schemas. We have chosen the latter course, whereas Boyer and Moore extensively
pursued the former. Second, these axioms are not programs. The variability of expressiveness in

axioms beyond the usual recursion seems worth using.

See Appendix | on page 56 for a listing of the type SequenceOfinteger.

Transcript file <SRBATES>AFFIRMTRANSCRIPT.14-NOV-80.7
is open in the AFFIRM system <AFFIRM>AFFIRM.EXE.120

1U:
We are increasing the linewidth so the transcript fills a printed page (the default value is 79).

2u: profile TerminalLineWidth = 88;
TerminalLineWidth: 88
3U: needs type SequenceOflnteger;

compiled for AFFIRM on 7-Aug-80 12:38:59
file created for AFFIRM on 7-Aug-80 11:10:22
" SEQUENCEOFINTEGERCOMS

(File created under Affirm 108)
<PVLIBRARY>SEQUENCEOFINTEGER.COM.3

4U:
The needs command gives us the current Sequenceofinteger. The message about "(File created
...)" states that the loaded version of SequenceQfInteger wasn’t created in the current version of
Affirm, but the version difference is irrelevant. The library version of SequenceQfInteger will
be different if you repeat this transcript.

5U: declare s1,52,s3:SequenceOflInteger;
s1, s2, s3: SequenceOfinteger
e U: try subseqTréns, s1 subseq s2 and s2 subseq s3 imp s1 subseq s3;

Making node subseqTrans a theorem.
subseqTrans is untried.

alls1, s2, s3(s1 subseq s2 and s2 subseq s3imp s1 subseq s3)

7U:
1t should be clear afier studying the axioms that s3 is the most natural variable to induct on,
since the axioms permute the constructors through the second parameter position of subseq.

8 U: employ Induction(s3);

Case NewSequenceOfinteger: Prop(NewSequenceOfinteger) remains to be shown.

Case apr: all ss, ii (IH(ss) imp Prop(ss apr ii)) remains to be shown.

(NewSequenceOfinteger:).

all s1, s2 (s1 subseq s2 and (s2 = NewSequenceOfinteger) imp s1 = NewSequenceOfinteger)

o U: replace s2;

TRUE

10U:
We have proved the basis case (NewSequenceOfInteger) so off we go 1o the induction step. We
could have turned on AutoNext, a profile entry, so we wouldn’t have 10 explicitly do the next
command.

11 U: next;
Going to leaf apr:.

all sg', ii’, s1, 82
{ IH(ss’, 1 {subsegTrans}) and s1 subseq s2
and (s2 = NewSequenceOfinteger) or s2 subseq ss’
~orlesslast(s2) subseq ss’ and (Last(s2) = ii')
imp (s1 = NewSequenceOfinteger) or s1 subseq ss'
or LessLast(s1) subseq ss’ and (Last(s1) = ii’))

12 U: suppose s2 = NewSequenceOflnteger ;

(yes:)
all ss’, ii’, 1,82 _ -
{ (s2 = NewSequenceOfinteger) and IH(ss’, 1 {subseqTrans})
and s1 subseq s2
imp (st = NewSequenceOfinteger) or s1 subseq ss’
or Lesslast(s1) subseq ss’ and (Last(s1) = ii"))

13U .
We could have done a split instead, but sometimes it is harder to figure out what a split will do.

14 U: print proof ;
theorem subseqTrans, s1 subseq s2 and s2 subseq s3imp s1 subseq s3;

proof tree:
81 subseqTrans
employ Induction(s3)
9. NewSequenceOfinteger:
2 replace s2
(proven!)
12: apr:
3 suppose s2 = NewSequenceOfinteger
22> yes:

"
? no:5

15U: replace s2;

TRUE
16 U: next;
Going to leaf no:.

all ss’, ii’, s1, 82
((s2 ~ = NewSequenceOfinteger) and IH(ss’, 1 {subseqTrans})
and s1 subseq s2
and s2subseqss’
or LesslLast(s2) subseq ss’ and (Last(s2) = ii’)
imp (s1 = NewSeguenceOfinteger) or s1 subseq ss’
or LessLast(s1) subseq ss’ and (Last(s1) = ii’))

17 U:
The other case of event 12: not(s2 = NewSequenceOfInteger).

18 U: suppose s2 subseq ss’ ;

. (yes:)
all ss’,ii’, s1, 82 v
(82 subseq ss' and (s2 ~ = NewSequenceOfinteger)
and IH(ss’, 1 {subseqTrans})
and s1 subseq s2
imp (s1 = NewSequenceOfinteger) or s1 subseq ss’
or LessLast(s1) subseq ss’ and (Last(s1) = ii*))

19U: invoke IH ;

Now we need the Induction Hypothesis to link sl, ss’, and s2 transitively.

all ss’, ii’, s1, s2 (some s1’, s2°
(s2 subseq ss’ and (s2 ~ = NewSequenceOfinteger)
and s1’ subseq s2' and s2° subseq ss’ imp s1’ subseq ss’
and s1 subseq s2
imp (st = NewSequenceOfinteger) or s1 subseq ss’
or LessLast(s1) subseq ss’ and (Last(s1) = ii')))

20 U:

Afier invoking the induction hypothesis we have to instantiate sl’ and s2’, the free variables of
the prop we are inducting on. Let’s see if search can find it.

21 U: search ;

1/13: (s2' = ss')and (s1’ = s2)

2/13: 82' = §2
1/3. 81’ = 82
2/3: s1' = s1

Proved by chaining and narrowing
using the substitution

(s2' = s2)and (s1’ = s1)
TRUE

22 U: next;
Going to leaf no:.

all ss', ii’, s1, 82 .
(~(s2 subseq ss’) and (s2 ~ = NewSequenceOfinteger)

and IH(ss’, 1 {subseqTrans})

and s1 subseq s2

and LesslLast(s2) subseq ss’

and Last(s2) = ii’

imp (s1 = NewSequenceOfinteger) or s1 subseq ss’
or LessLast(s1) subseq ss’ and (Last(s1) = ii'))

23 U:
The other case from event 18: noi(s2 subseq ss’). The system doesn’t realize that if s2 isn't
NewSequenceOfInteger then s2=LessLast(s2) apr Last(s2), but by employing the
NormalForm schema we will enumerate the cases that s2 can take on (NewSequenceQfInteger
- or apr) thus firing the axioms for subseq with respect to s2.

24 U: employ NormalForm(s2) ;

Case NewSequenceOfinteger: Prop(NewSequenceOfinteger) proven.
Case apr: all ss, ii (Prop(ss apr ii)) remains to be shown.
(apr:)
all ss’, ii’, ss, ii, s1 .
(~((ss’ eprii*) subseq ss) and IH(ss, 1 {subseqTrans})-
and s1 ~ = NewSequenceOfinteger
and s1 subseq ss’ '
or LessLast(s1) subseq ss’ and (Last(s1) = ii’)
and ss’ subseq ss

andii’ = ii
imp s1subseqss i
or LessLast(s1) subseq ss and (Last(s1) = ii))

25 U: replace ii ;

all s¢', it’, ss, ii, s1
(~((ss’ aprii') subseq ss) and IH(ss, 1 {subseqTrans})
imp s1 = NewSeqguenceOfinteger
or if s1 subseq ss'
then ss’'subseq ss and (i’ = ii)
imp s1subseqss
or LesslLast(s1)subseq ss
and Last(s1) = ii’
else LessLast(s1) subseq ss'
and Last(s1) = ii’
and ss’ subseq ss
andii’ = ii
~ imp s1 subseq ss or LesslLast(s1) subseq ss)

26 U: suppose sl subseq ss’ ;

(yes:)

all s¢’, ii’, ss, ii, s1

| .s1 subseg ss’' and ~((ss’ apr ii') subseq ss)
and IH(ss, 1 {subseqTrans})
and s1 ~ = NewSequenceOfinteger
and ss’ subseq ss
andii’ = ii

imp s1subseqss

or Lessleast(s1) subseq ss and (Last(s1) = ii’))

27 U: invoke IH ;

all sg', ii’, ss, ii, s1 (some s1’, s2
(s1 subseq ss’ and ~({ss’ apr ii’) subseq ss)

and s1’ subseq s2 and s2 subseq ss imp s1’ subseq ss

and s1 ~ = NewSequenceOfinteger
and ss' subseq ss
andii’ = ii
imp s1subseqss
or LesslLest(s1) subseq ss and (Last(s1) = ii’)))

28 U: search ;

1/16: (s2 = ss’) and (s1’ = s1)

Proved by chaining and narrowing
using the substitution

(s2 = ss')and (s1' = s1)
TRUE

29 U: nexty
Going to leaf no:.

all ss’, ii’, ss, ii, 81
(~(s1 subseq ss’)
) and ~((ss’ aprii’) subseq ss)

and IH(ss, 1 {subsegTrans})

and s1 ~ = NewSequenceOfinteger

and LesslLast(s1) subseq ss’

and Last(s1) = ii’

-and ss’ subseq ss

‘and i’ = ii : .

imp s1 subseq ss or LessLast(s1) subseq ss)

30 U:
The other case of step 26 : noi(sl subseq ss’).

31 u: invoke IH ; -

all ss’, ii’, ss, ii, s1 (some s1°, s2
(~(s1 subseq ss’)
and ~((ss’ aprii’) subseq ss)
and s1’ subseq s2 and s2 subseq ss imp s1' subseq ss
and s1 ~ = NewSequenceOfinteger
and LesslLast(s1) subseq ss’
and Last(s1) = ii’
and ss’ subseq ss
andii’ = ii
imp s1 subseq ss or LessLast(s1) subseq ss))

32 U: search ;

1/17: (s2 = ss’) and (s1' = s1)
2/17: (s2 = ss)and (s1’ = ss’ aprii’)
3/17: s2 = ss' aprii’

4/17: s1’' = ss’ april’
1/5: s2 = s8 .
2/5: s2 = ss' aprii’

3/5:. s2 = s¢’

4/5: s2 = s1

5/5: s2 = LessLast(s1)
5/17: (s2 = ss')and (s1' = LessLast(s1))
Proved by chaining and narrowing
using the substitution

(s2 = ss’) and (s1' = LesslLast(s1))

TRUE
subseqTrans proved.

33 U:
We are all done with subseqTrans, let’s review the proof.

34 U: print proof ;
theorem subseqTrans, s1 subseq s2 and s2 subseq s3 imp s1 subseq s3;

proof tree:,
8:! subseqTrans
" employ Induction(s3)
9: NewSequenceOfinteger:
2 replace s2 ’

. (proven!)
12: apr: _ A
3 suppose s2 = NewSequenceOfinteger

15: yes:

4 replace s2

(proven!) :
18: no:5 suppcse s2subseq ss’
19: yes:

6 invoke IH
21: - 8 put (s2' = s2)and (s1’ = s1) {search}
21: (proven!)
24: no:7 employ NormalForm(s2)
NewSegquenceOfinteger:
Immediate
25: apr:
10 replace ii
26: 11 suppose s1 subseqss’
27: yes:
12 invoke IH

28: 14 put (s2 = ss')and (s1' = s1) {search}
28: (proven!)
31: no:13 invoke IH
32: 16 put s2 =ss

and s1’ = LessLast(s1) {search}

32:-> (proven!)
35 U: quit;

Type CONTINUE to return to AFFIRM.

10

2. The Knuth-Bendix Algorlthm on Group Theory
Axioms
This transcript shows the Knuth-Bendix algorithm generating a long sequence of rules. You will

note we start with 3 rules, the 3 axioms which define a group:

axiom e.op X = X;
axiom inv(x) op x

= e;
axiom (x op y) op z =

x op (y op z)
ana cnd up with the 3 rules above and 7 rule lemmas:

inv(e) = e

inv(inv(y)) =

inv(y op y"') an(y") op 1nv(y)
~inv(y) op (y op z) =

Z Op e = 2

y op (inv(y) op z)

y op inv(y) =

This brocess is not automatic. You will note in the middle of the transcript when the system is

proposing a new rule we have to reverse its direction (see page 14).

The rule lemmas could have been proven as theorems by induction using the first three axioms.

The "induction" accomplished by Knuth-Bendix is discussed in [Musser 80].

Transcript file (RBATES>AFFIRMTRANSCRIPT.7-NOV-80.3
is open in the AFFIRM system <AFFIRM>AFFIRM.EXE.120

1 U: print file <affirm>grpl.axioms ;

<AFFIRM>GRP1.AXIOMS.3:

type Grpi;
. declare x,y,z:Crp1;
interface e:Grp1;
interface inv(x),op(x,y):Grp1;
infix op;
axiom (x = x) = TRUE;
axiomeopx = X;
axiominv(x)op x = €;)
axiom(xopy)opz = xop(yopz);

end;
2U: read <affirm>grpl.axioms ;

(Reading AFFIRM commands from <AFFIRM>GRP1.AXIOMS.3)
type Grp1
reflexive: Grp1
‘New rule:
reflexive = reflexive
-> TRUE
1/1. Affirmed.
X, Y, z. Grp1
Rule simplifies to TRUE. Affirmed.
"New rule:
. eopx
DX
1/1. Affirmed.
New rule:
inv(x) op x .
,_> e
1/1.. Affirmed.
New rule:
_(xopy)opz
->xop (y op 2)

From (xopy)opz = = xop (y op 2)
and inv(x)opx = =
we obtain a new rule:
inv(y) op (y op z)
Dz
A
2/2.
Frominv(y)op(yopz) = =
and inv(y)op(yopz) ==z
we obtain a new rule:
inv(inv(y)) op z
->yopz
8}
Frominv(y)op(yopz) ==z
and (xopy)opz = = xop (y op 2)
we obtain a new rule:
inv(x opy’) op (x op (y’ op z))
Dz
A
Frominv(y)op(yopz) ==z
and inv(x)opx = =
we obtain a new rule:
zope
Dz

1

12

1

Frominv(y)op(yopz) ==z

and eopXx == X
we obtain a new rule:
inv(e)opz
Dz
3/6..010
Fromzope==2

and inv(x)op x = =
we cotain a new rule:
inv(e)
e

5/7 discarding rule
invie)opz =z

6/7.1.!
Frominv(inv(y)) opz == yopz
and zope==12
we obtain a new rule:
inv(inv(y))

- y
. discarding rule
inv(inv(y))opz = yop z

7/8.1 .
Frominv(inv(y)) = =
and inv(y)op(yopz) ==2
we obtain a new rule:
y op (inv(y) op z)
D>z
A
From inv(inv(y)) = =
and inv(x)op x = =
we obtain a new rule:
y op inv(y)
e
| .

Fromyopinv(y) = =
and (xopy)opz == xo0p(yopz)
we obtain a new rule:
x op (y' op inv(x op Y'))
e
[

Fromyop (inv(y)opz) ==z
and (xopy)opz == xo0p(yopz)

we obtain a new rule:
x op (y' op (inv(x op y') op 2))
>z
107120004
From x op (y' op inv(x opy')) = =
and yop (inviy)opz) ==z
we obtain a new rule:
y' op inv(inv(y) op ¥’)
5 y
Fromxop (y' opinv(xopy’)) = =
and inv(y)op(yopz) = =
we obtain a new rule:
y' opinv(y opy’)
- inv(y)
1!
Fromxop (Y opinv(xopy))) = =
and (xopy)opz = = xop(yopz)
we obtain a new rule:
x op (y op (y' op inv(x’ op (y op ¥'))))
e
1/15.0
Fromy' opinv(y opy') = = inv(y)
end y' opinviyopy') = = inv(y)
we obtain a new rule:
inviyopy#3)opy
- inv(y # 3)
!. discarding rule
xop(y'opinv(xopy’)) = e

1)
Fromy' opinv(yopy') = = inv(y)
and yop (inv(y)opz) ==z
we obtzin a new rule:
inv(y op inv(y”))

-2y’ op inv(y)
Fromy' opinv(y opy’) = = inv(y)
and inv(y)op(yopz)==2z
we obtain a possible new rule:

inv(y”) opinv(y) = = inv(y op y*')
ok??
These are the user’s options when Knuth- Bendix asks what to do with a possible new rule:
one of:
Yes
Reverse it

Suppress it (put it on the list "BadEquations”)

14

Treat it as Equation -> TRUE
Instead accept another equation from the tgarminal
The reversal decision was based on the structure-reducing characteristic of finite termination.

Ok? Reverse it [confirm]
IRIIRRY

12/18. discarding rule
y' opinv(y opy’) = inv(y)

......................

13/18 discarding rule
inv(y opinv(y™)) = y” op inv(y)

14/18 discarding rule
inviyopy#3)opy = inv(y #3)

15/18 discarding rule
y' opinv(inv(y) op y’) = y

16/18 discarding rule
inv(xopy')op(xop(y'opz)) =z

17/18@iscarding rule _
xop (y' op(inv(xopy)opz)) =2z

18/18discarding rule
X op (yop (y' op inv(x"op (yop y))) = e

Affirmed.
Leaving Grp1; now editing Basis.

3U: print type Grpl ;

type Grpl;
declare reflexive, x,y, z. v, X', y#3, y"': Grp1;
interfaces e.inv(x), x op y: Grp’;

-infix . op:
axiom reflexive = reflexive = = TRUE;
axioms eopx ==X,

inv(x) opx = = e,
(xopy)opz == xop (yopz);

rulelemmas inv(e) = = e,
inv(inv(y)) = = v,
inv(y op y”) = = inv(y”) op inv(y);

rulelemmas inv(y) op (yopz) = = z,
zZope ==2,
yop (invly)opz) = = 2,
ycpinv(y) = = ;

end {
Grpl};

4 U: quit;

Type CONTINUE to return to AFFIRM.

15

16

3. Simple Send VCs

This transcript shows a verification of very simple message-passing system. The system is
described by a Pascal-like program. It uses two abstract data types, SetOfElemType and ElemType.
The data types are pre-defined and kept in <PVLIBRARY> and used to verify the program (see page
56, Appendix |, for a listing of the type SetOfElemType). More extensive annotation and explanation

of the firsi part appear in the User's Guide.

Transcript file CRBATES>AFFIRMTRANSCRIPT.11-NOV-80.2
is open in the AFFIRM system <AFFIRM>AFFIRM.EXE.120

1U:

We are increasing the AverageNameLength and the TerminalLineWidih so this transcript
looks better for our printing device.

2 U: profile AverageNameLength = 10;

" AverageNamelLength: 10

3U: profile TerminalLineWidth = §88;
TerminalLineWidth: 88

4U: needs type SetOfElemType;

compiled for AFFIRM on 22-Aug-80 14:20:53

file created for AFFIRM on 22-Aug-80 14:20:16

SETOFELEMTYPECOMS

(File created under Affirm 111)

compiled for AFFIRM on 22-Aug-80 09:22:12

file created for AFFIRM on 22-Aug-80 09:22:00

ELEMTYPECOMS

(File created under Affirm 111)
<PVLIBRARY>ELEMTYPE.COM.2<PVLIBRARY>SETOFELEMTYPE.COM.2

sU: print file <pvlibrary>simplesend.program ;

<PVLIBRARY>SIMPLESEND.PROGRAM.7:

program SendReceive;

{

This set of three procedures simulates an overly simple message-passing system. in SimpleSend,
messages are simply "picked" out of RemainingToBeSent, "sent" to ReceivedSoFar, then deleted
from RemainingToBeSent, which decreases from Tota/ToBeSent down to NewSetOfElemType. After
"send" the message is either received or lost. No checks or resends are made so the strongest
property we can prove about this program is that ReceivedSoFar is a subset of TotalToBeSent.

3
{

This procedure won't be proved, just left pending.

}

procedure pick(s:SetOfElemType; var it:ElemType);
pre s~ = NewSetOfElemType;

postitins’;

{

Nor will this procedure be proved, only assumed.

non-determinism.

}

procédure send(it:ElemType; var rec:SetOfElemType);
‘pre TRUE;”
post rec=rec’ add it’ orrec= rec’;

1

Note that the use of 'or’ gives us a kind of

Here’s the little proceduré which simulates sending and receiving messages.

}
procedure SimpleSend(Total ToBeSent:SetOfElemType;
var ReceivedSoF ar:SetOfElemType);
~ pre TRUE;
post ReceivedSoFar subset TotalToBeSent';

var NextToSend:ElemType;
var RemainingToBeSent : SetOfElemType;
begin
RemainingToBeSent : = TotalToBeSent;
ReceivedSoFar : = NewSetOfElemType;

maintain ReceivedSoFar subset TotalToBeSent
and RemainingToBeSent subset TotalToBeSent
while RemainingToBeSent~ = NewSetOfElemType do
begin
pick(RemainingToBeSent, NextToSend);
send(NextToSend, ReceivedSoFar);

RemainingToBeSent : = RemainingToBeSent rem NextToSend;

end;
end;

18

6u:
The units pick and send are not provable since we didn’t supply their bodies.

7 U: readp <pvlibrary>simplesend.program ;

{Reading Pascal program units from <PVLIBRARY>SIMPLESEND.PROGRAM.7)
The program units are SendReceive, pick, send, and SimpleSend.
Type checking SendReceive... pick... send... Simpl “znd...

8 U: genves SimpleSend;
Theresult lemma for SimpleSend is:

" ‘assume computesSimpleSend, computes(SimpleSend(TotalToBeSent, ReceivedSoFar),
result{(ReceivedSoFar1)) :
imp ReceivedSoFar1 subset TotalToBeSent;

There are 3 verification conditions for SimpleSend:

theorem SimpleSend # 1, ReceivedSoFar2 subset TotalToBeSent
and RemainingToBeSent1 subset TotalToBeSent
and RemainingToBeSent1 = NewSetOfElemType
imp ReceivedSoFar2 subset TotalToBeSent;

fheoré_m SimpleSend # 2, - NewSetOfElemType subset TotalToBeSent
and TotalToBeSent subset TotalToBeSent;

theorem SimpleSend # 3, ReceivedSoFar subset TotalToBeSent

and RemainingToBeSent subset TotalToBeSent

and RemainingToBeSent ~ = NewSetOfElemType

and computes(pick(RemainingToBeSent, NextToSend),
result(NextToSend?2))

and computes(send(NextToSend2, ReceivedSoFar),
result(ReceivedSoFar3))

imp ReceivedSoFar3 subset Total ToBeSent
and (RemainingToBeSent rem NextToSend?2) subset TotalToBeSent

(VC1:) _

Program SimpleSend is awaiting the proof of ves SimpleSend # 1, SimpleSend # 2
. ,and SimpleSend # 3.

9 U: genvcs pick.send;

The result lemma for pick is:

assume computespick, . s~= NewSetCfElemType

19

and computes(pick(s, it),
result(it1))
impitlins;
There is 1 verification condition for pick:
theorem pick #1, s~ = NewSetOfElemType
impitins;
(VC1:)
Program pick is awaiting the proof of vc pick # 1.
The result lemma for send is:
“assume computessend, computes(send(it, rec),
result(rect))
imp recl = recaddit
orrect =rec;
There is 1 verification condition for send:
theorem send # 1, rec =recaddit
or rec =rec;

(_VC1)
Program send is awaiting the proof of vc send # 1.

10U o
T Try to prove the first verification condition for the unit SimpleSend.
11 U: try SimpleSend # 1;

SimpleSend # 1 is untried.

TRUE
SimpleSend # 1 proved.

12 U: next;

There's more than one unproven ancestor. You may pick one of SimpleSend # 2
or SimpleSend # 3.

13 U:

We have proved SimpleSend# 1. The sysiem doesn’t wani to pick either verification condition
so we will pick number 2.

14 U: try SimpleSend # 2;

20

SimpleSend # 2 is untried.

all TotalToBeSent (NewSetOfElemType subset TotalToBeSent
and TotalToBeSent subset TotalToBeSent)

15U: invoke subset|all| ;

TRUE
SimpleSend # 2 proved.

16 U: next;

Going to unproven ancestor SimpleSend # 3.
SimpleSend # 3 is untried.

all ReceivedSoFar,
TotalToBeSent,
RemainingToBeSent, NextToSend, NextToSend2, ReceivedSoFar3
(ReceivedSoFar subset TotalToBeSent and RemainingToBeSent subset
TotalToBeSent
‘and RemainingToBeSent ~ = NewSetOfElemType
and computes(pick(RemainingToBeSent, NextToSend),
result(NextToSend2))
and computes(send(NextToSend2, ReceivedSoFar),
result(ReceivedSoFar3))
imp ReceivedSoFar3 subset TotalToBeSent
and (RemainingToBeSent rem NextToSend2) subset TotalToBeSent)

17 U:

send.
18 U: apply computespick:

some s, it, it1
(s ~ = NewSetOfElemType
and computes(pick(s, it),
result(it1))
impit1in s)

1o U: apply computessned;
(computessned => computessend)

some it’, rec, rect
(computes(send(it’, rec), result(rect))

We are at the third verification condition. We will apply the computes lemma for pick and

imp recl = recadd it
orrecl=rec)

21

20U: put s= RemainingToBeSent,. it =NextToSend, it] =NextToSend2, it’=NextToSend2,

rec=ReceivedSoFar, recl =ReceivedSoFar3 ;

all ReceivedSoFar,
TotalToBeSent,
RemainingToBeSent, NextToSend, NextToSend2, ReceivedSoFar3
(computes(send(NextToSend2, ReceivedSoFar),
result(ReceivedSoFar3))
and ReceivedSoFar3
= ReceivedSoFar add NextToSend2
or ReceivedSoFar3 = ReceivedSoFar
and RemainingToBeSent ~ = NewSetOfElemType
and computes(pick(RemainingToBeSent, NextToSend),
result(NextToSend2))
and NextToSend2 in RemainingToBeSent
and ReceivedSoFar subset TotalToBeSent
.and RemainingToBeSent subset TotalToBeSent
imp ReceivedSoFar3 subset TotalToBeSent
and RemainingToBeSent rem NextToSend2
subset TotalToBeSent)

- 21 U: declare sl:SetOiEleniType;

s1: SetOfElemType

22 U: apply remSubset, s subset s1 imp s rem x subset s1;

somes, s1, X
(ssubsetst
imp (s rem x) subset s3)

23U: put s=RemainingToBeSent,s1=TotalToBeSent,x =NextToSend2;

all ReceivedSoFar,
TotalToBeSent,
RemainingToBeSent, NextToSend, NextToSend2, ReceivedSoFar3
(RemainingToBeSent subset TotalToBeSent
and RemainingToBeSent rem NextToSend?2
subset TotalToBeSent
and computes(send(NextToSend2, ReceivedSoFar),
result(ReceivedSoFar3))
and ReceivedSoFar3
= ReceivedSoFar add NextToSend?2

22

or ReceivedSoFar3 = ReceivedSoFar
and RemainingToBeSent ~ = NewSetOfElemType
and computes(pick{RemainingToBeSent, NextToSend),
result(NextToSend2))
and NextToSend2 in RemainingToBeSent
and ReceivedSoFar subset TotalToBeSent
imp ReceivedSoFar3 subset TotalToBeSent)

24 U: suppose ReceivedSoFar3=ReceivedSoFar add NextToSend2;

(yes:)
all ReceivedSoFar,
"TotalToBeSent,
RemainingToBeSent, NextToSend, NextToSend2, ReceivedSoFar3
(. ReceivedSoFar3
' = ReceivedSoFar add NextToSend2
and RemainingToBeSent subset TotalToBeSent
and RemainingToBeSent rem NextToSend?2
subset TotalToBeSent
and computes(send(NextToSend2, ReceivedSoFar),
result(ReceivedSoFar3))
and RemainingToBeSent ~ = NewSetOfElemType
and computes(pick(RemainingToBeSent, NextToSend),
result(NextToSend?2))
and NextToSend2 in RemainingToBeSent
and ReceivedSoFar subset TotalToBeSent
imp ReceivedSoFar3 subset TotalToBeSent)

25U: feplace ReceivedSoFar3;

all ReceivedSoFar,
TotalToBeSent,
RemainingToBeSent, NextToSend, NextToSend?2, ReceivedSoFar3
(ReceivedSoFar3
= ReceivedSoFar add NextToSend?2
and RemainingToBeSent subset TotalToBeSent
and RemainingToBeSent rem NextToSend2
subset TotalToBeSent
and computes(send(NextToSend2, ReceivedSoFar),
result(ReceivedSoFar add NextToSend2))
and RemainingToBeSent ~ = NewSetOfElemType
‘and computes(pick(RemainingToBeSent, NextToSend),
result(NextToSend?2))
and NextToSend?2 in RemainingToBeSent
and ReceivedSoFar subset TotalToBeSent
imp (ReceivedSoFar add NextToSend2) subset TotalToBeSent)

26 U: apply addSubset,'s subset s1 and x in s1 imp s add x subset s1;

some s, s1, x
(ssubsetsiandxinst
imp (s add x) subset s1)

27 u: put s=ReceivedSoFar,s1=TotalToBeSent,x =NextToSend2;

all ReceivedSoFar,
TotalToBeSent,
RemainingToBeSent, NextToSend, NextToSend?2, ReceivedSoFar3
) (ReceivedSoFar subset TotalToBeSent
’ and ~(NextToSend?2 in TotalToBeSent)
and ReceivedSoFar3
= ReceivedSoFar add NextToSend2
and RemainingToBeSent subset Total ToBeSent
and RemainingToBeSent rem NextToSend?2
subset TotalToBeSent
“and computes(send(Next7oSend2, ReceivedSoFar),
result(ReceivedSoFar add NextToSend?2))
and RemainingToBeSent ~ = NewSetOfElemType
and computes(pick(RemainingToBeSent, NextToSend),
result(NextToSend?2))
and NextToSend?2 in RemainingToBeSent
_imp (ReceivedSoFar add NextToSend?2) subset TotalToBeSent)

28 U: apply inSubset, x in s and s subset s1 imp x in s1;
some X, S, st
(xinsand ssubsetst

imp x in s1)

20 U: search ;

1/9: s = TotalToBeSent
and x = NextToSend2

2/8: s = RemainingToBeSent
and x = NextToSend?2

"1/2: s1 = RemainingToBeSent

2/2: s1 = TotalToBeSent
Proved by chaining and narrowing
using the substitution

s = RemainingToBeSent
and x = NextToSend2
and s1 = TotalToBeSent

.24

TRUE
30 U: next;
Going to leaf no:.

all ReceivedSoFar,
TotalToBeSent,
RemainingToBeSent, NextToSend, NextToSend2, ReceivedSoFar3
(ReceivedSoFar3
~ = ReceivedSoFar add NextToSend2
and RemainingToBeSent subset TotalToBeSent
and RemainingToBeSent rem NextToSend?2
subset Total ToBeSent
and computes(send(NextToSend2, ReceivedSoFar),
result(ReceivedSoFarg))
and ReceivedSoFar3 = ReceivedSoFar
and RemainingToBeSent ~ = NewSetOfElemType
and computes(pick(RemainingToBeSent, NextToSend),
. result(NextToSend?2))
and NextToSend2 in RemainingToBeSent
and ReceivedSoFar subset Total ToBeSent
imp ReceivedSoFar3 subset Total ToBeSent)

31U . : ’
' This is the case where not(ReceivedSoFar3 = ReceivedSoFar add NexiToSend2).

32 U: replace ReceivedSoFar3;
SimpleSend # 3 is awaiting the proof of lemmas remSubset, addSubset, and inSubset.

TRUE
33U: print proof; -

theorem SimpleSend # 3, ReceivedSoFar subset Total ToBeSent

and RemainingToBeSent subset Total ToBeSent

and RemainingToBeSent ~ = NewSetOfElemType

and computes(pick(RemainingToBeSent, NextToSend),
result(NextToSend2))

and computes(send(NextToSend?2, ReceivedSoFar),
result(ReceivedSoFar3))

imp ReceivedSoFar3 subset TotalToBeSent
and (RemainingToBeSent rem NextToSend2) subset TotalToBeSent

SimpleSend # 3 uses computespick%, computessend%, remSubset?, addSubset?, and inSubset?.

25

proof tree:
18 SimpleSend# 3
apply computespick
19: 13 apply computessend
20: 14 put s=RemainingToBeSent
and it=NextToSend
and it1 = NextToSend2
and it’ = NextToSend2
and rec = ReceivedSoFar
and rec1 = ReceivedSoFar3
22: 15 apply remSubset
23: 17 put s=RemainingToBeSent
' and s1 = TotalToBeSent
and x = NextToSend2
24: 18 suppose ReceivedSoFar3
= ReceivedSoFar add NextToSend2
25. yes:
19 replace ReceivedSoFar3
26: 21 apply addSubset
27: 23 put s=ReceivedSoFar
and s1="TotalToBeSent
and x = NextToSend2
28: 24" apply inSubset
29: 26 put s = RemainingToBeSent
and x = NextToSend2
. and s1 = TotalToBeSent {search}
29: (proven!)
32: no:{SimpleSend # 3}
20 replace ReceivedSoFar3
> (proven!)

We have finished off SimpleSend# 3 and have only the 3 lemmas 1o prove. The next command
will pick one of the lemmas.
35U: next;

Gbing to lemma remSubset.
remSubset is untried.

alls, s1, x
(ssubsetst

imp (s rem x) subset s1)

36 U: invoke subset|all] ;

all's, s1, x, X"’ (some x’

26

(x'insimp x'insi
and x” in (s rem x)
imp x” in s1))

37U put X’ =x";

all s, s1, x, x”

(~(x"ins)
and x"

insrem x
imp x” in s1)

3sU: apply remEqyv, iin (s rem x) eqv iin s and i~ =x;
" Please declare i (then type ok; to continue).
39(1) U:
We have forgotien to declare i, so the system asks us to declare it.
40 (1) U:declare i:ElemType;
i: ElemType
41(1).U: 0k ;
somei, s’, X’
(~(iin(s'remx’))
eqviins' impi=x’)
42 U: search;
1/4: &' =58
andi = x”
1/1: X' = x
Proved by chaining and narrowing
using the substitution
s'=T
andi = x”

and x' = X

TRUE
remSubset is awaiting the proof of lemma remEqv.

43U: print proof’;

theorem remSubset, s subset s1
imp (s rem x) subset s1;
remSubset uses remEqgv?.

proof tree:
36:] remSubset
invoke subset | all |

37: 28 put x'=x"
41. 29 apply remEaqv
42: 31 put s =s

andi = x"

and x’ = x {search}
"42:-> (proven!)

44 U:
We have to prove the lemma remEqpv.

45 U: next;

Going to lemma remEqgv.
remEqv is untried.

alli, s, x
(~(iin(sremx))
eqviinsimpi=x)

46 U: employ Induction(s);

Case NewSetOfElemType: Prop(NewSetOfElemType) proven.
Case add: all ss,ii (IH(ss)
imp Prop(ss add ii)) remains to be shown.
(add:)
all ss’, ii’, i, x
(IH(ss', 30 {remEqgv})
impifi=if’
then ~ i
inifii'=x
then ss’ rem x
else (ss' rem x) add ii’
eqvi=x
else ~ i
inifii’=x
then ss’ rem x
else (ss’ rem x) add i’
eqv iinss’
impi=x)
(The 'cases’ command is applicable)

27

28

47 U:

We could have turned on AutoCases so we wouldn’t have 1o explictly do the

48 U: cases;

all sg', ii’, i, X
(IH(ss', 30 {remEqv})
impifi=il’
then ii'=x
and ~(i in (ss’ rem x))
eqvi=x
else ~(iin(ss’' remx))
eqv iinss’
impi=x)

49 U: invoke IH;

allss', ii’, i, x (some i’, X’
(ifi'inss' impif=x '
then i'in(ss’'remx’)
orifi=ii’
then i’ =x
and ~(i in (ss’ rem x)).
eqvi=x
else ~(iin(ss’ rem x))
eqv iinss’
impi=x
else i'in(ss' remx')
imp ifi=if’
then ii'=x
and ~(i in (ss’ rem x))
eqvi=x
else ~(iin(ss’'rem x))
eqv iinss
imp i=x))

50 U: search ;

1/74: 1" =i
1/2: X
2/2: X'

. 2/4: X =i
andi’ =i

3/4: x'=x

n
bed

cases command.

andi’ =i
4/4: X' =X

andi’ =i’
Unsuccessful.

51U:
search couldn’t reduce the expression to true. So we can either use the put command or the
choose command. Let’s use choose.

52 U: choose 1,2 ;

1/4: V" = i
2/2: X' = X
allss’, ii’, i, x
(ifiin ss’
then i=x
and ~ i
in ss’'rem x
andi = ii’
impii’ = x
else = ~ i
in'ss’ rem x
andi = ii’ '
imp i’ =x
eqgvi = x)

s3U: replace i;

remEqv proved.
remSubset proved.

TRUE
54 U: print status;

The untried theorems are addSubset, inSubset, pick # 1, and send # 1.

No theorems are tried.

The assumed theorems are computespick, computessend, and computesSimpleSend.
The awaiting lemma proof theorems are pick, send, SimpleSend, and SimpleSend # 3.
The proved theorems are remEqv, remSubset, SimpleSend # 1, and SimpleSend # 2.

55 U: print proof ;
" theorem remEqv, iin(srem x)

eqv iins
andi~= x;

proof tree:
46:! remEqv

employ Induction(s)
> NewSetOfElemType:

Immediate
48: add:

33 cases
49: 34 invoke IH
52: 35 put i'=i

and x’ = x {choose}
53: 36 replace i
> (proven!)
56 U: next ;
" There's more than one unproven ancestor. You may pick one of addSubset or inSubset.
57 U:
We still have 2 more lemmas to prove before our proof of SimpleSend# 3 will be completed.
s8 U: try addSubset;
addSubset is untried.
alls, s1,x
(ssubsetsiandxinst

imp (s add x) subset s1)

59 U: invoke subset|all] ;

all s, s1, x, X’ (some x’

(x'insimp x’in s1
and xin s1
and (x"=x)orx”ins
imp x in s1))

soU: put x’=x";

all's, s1, x, x”

(~(x"ins)
and x in s1
and x*’ = x

imp x* in s1)

61 U: replace x;

addSubset proved.
TRUE
62 U: print proof ;

theorem addSubset, s subset s1
“and x in s
imp (s add x) subset s1;

proof tree:
50:! addSubset
invoke subset | all |
"60: 37 put x’=x"
61: 38 replace x
-> (proven!)

63U: next ;

Going to unproven ancestor inSubset.
inSubset is untried.

all x, s, s
(xinsand s subsets1
imp x in s1)

64 u: : ‘ .
‘ The last lemma for SimpleSend# 3.

65 U: invoke subset:

all x, s, s1 (some x’
(xins
and x’' insimp x'in s1
imp x ins1))

66 U: search ;

/1 x = x
Proved by chaining and narrowing
using the substitution

]

X =X

TRUE
inSubset proved.

31

a2

SimpleSend # 3 proved.
Program SimpleSend verified!

67 U:
That’s it, we have proved the unit SimpleSend

68 U: print proof;

theorem inSubset, xins
and s subset s1
imp x in s1;
proof tree:
65:! inSubset

invoke subset
66: 33 put x* = x {search}
66:-> (proven!)

69 U:

This print command will print any theorems that we have proven in this session.

70 U: print proof theorems;

theorem inSubset, xins
and s subset s1
imp xinsi;
proof tree:
65:! inSubset

‘invoke subset
66: 39 put x’ = x {search}
66:-> (proven!)

theorem addSubset, s subset s1
and xin s1
imp (s add x) subset s1;

proof tree:
52:! addSubset
invoke subset | all |
60: 37 put xX'=x"
_61: 38 replace x
(proven!)

theoremremEqv, iin(sremx)

eqv iins
andi~= x;
proof tree:
46:! remEqv .
employ Induction(s)
NewSetOiElemType:
immediate
48: add:
33 cases
49: 34 invoke IH
52: 35 put i'=i

and x’ = x {choose}
53: 36 replace i
(proven!)

theorem remSubset, s subset st
imp (s rem x) subset s1;
.remSubset uses remEqgv!.

proof tree:
36:! remSubset
invoke subset | all |

37: 28 put x'=x"
41: 29 apply remEgv
42: 31 put s =s

andi = x”

andx’ = x {search}
42: (proven!).

theorem SimpleSend # 3, ReceivedSoFar subset TotalToBeSent

and RemainingToBeSent subset TotalToBeSent

and RemainingToBeSent ~ = NewSetOfElemType

and computes(pick(RemainingToBeSent, NextToSend),
result(NextToSend?2)) .

and computes(send(NextToSend?2, ReceivedSoFar),
result(ReceivedSoFar3))

imp ReceivedSoFar3 subset TotalToBeSent
and (RemainingToBeSent rem NextToSend?2) subset TotalToBeSent

SimpleSend # 3 uses computespick%, computessend%, remSubset!, addSubset!, and inSubset!.

‘proof tree:
18:! SimpleSend # 3
apply computespick
19: 13 apply computessend
20: 14 put s=RemainingToBeSent
and it = NextToSend
and it1 = NextToSend2
and it' = NextToSend2
and rec = ReceivedSoFar
and rec1 = ReceivedSoFar3
22: - 15 apply remSubset
23: 17 put s=RemainingToBeSent
o and s1 = TotalToBeSent
and x = NextToSend?2
24: 18 suppose ReceivedSoFar3
= ReceivedSoFar add NextToSend2
25: -yes: »
18 replace ReceivedSoFar3
26: 21 apply addSubset
27: 23 put s=ReceivedSoFar
‘ and s1 = TotalToBeSent
and x = NextToSend2
28: 24 apply inSubset
20: 26 put s = RemainingToBeSent
) and x = NextToSend?2
and s1 = TotalToBeSent {search}
28: (proven!)
32: no:{SimpleSend # 3}
20 replace ReceivedSoFar3
(proven!)

theorem SimpleSend #2, NewSetOfElemType subset TotalToBeSent
and TotalToBeSent subset TotalToBeSent;

proof tree:
15! SimpleSend # 2

invoke subset | all |
15: (proven!)

theorem SimpleSend # 1, ,. ReceivedSoFar2 subset Total ToBeSent

and RemainingToBeSent1 subset TotalToBeSent
and RemainingToBeSent1 = NewSetOfElemType
imp ReceivedSoFar2 subset TotalToBeSent;

proof tree:
11:! (proven!)

theorem compu..~SimpleSend, computes(SimpleSend(TotalToBeSent, ReceivedSoFar),
result(ReceivedSoFar1))
imp ReceivedSoFar1 subset TotalToBeSent;

theorem SimpleSend, verification(SimpleSend);
SimpleSend uses SimpleSend # 1!, SimpleSend # 2!, SimpleSend # 3!, and computesSimpleSend%.

proéftree:

8:! SimpleSend

111 VC1:
Immediate

151 vC2:
SimpleSend # 2

invoke subset | all |
15: (proven!)
18:! VC3:
SimpleSend # 3
apply computespick
19: 13 apply computessend
20: 14 put s=RemainingToBeSent
and it = NextToSend
and it1 = NextToSend?2
and it’ = NextToSend2
and rec = ReceivedSoFar
and rec1 = ReceivedSoFar3
22: 15 apply remSubset
23: 17 put s=RemainingToBeSent
: and s1 = TotalToBeSent
and x = NextToSend2
- 24: 18 suppose ReceivedSoFar3
= ReceivedSoFar add NextToSend2

25: yes:
" 19 replace ReceivedSoFar3
26: 21 apply addSubset

27: 23 put s=ReceivedSoFar

and s1=TotalToBeSént
and x = NextToSend2
28: 24 apply inSubset
29: 26 put s = RemainingToBeSent
and x = NextToSend2
and s1 = TotalToBeSent {search}
29: (proven!)
32: no:{SimpleSend, VC3:}
20 replace ReceivedSoFar3
{proven!)
computes:{SimpleSend}
computesSimpleSend

2

theorem computespick, s ~ = NewSetOfElemType
and computes(pick(s, it),
result(it1))
impittins;

theorem pick #1, s~= NewSetOfElemType
' impitins;

theorem pick, verification(pick);
pick uses pick # 1? and computespick%.

proof tree:

9| pick

? VC1:
_pick #1

% computes:
computespick

theorem computessend, computes(send(it, rec),
result(rec1))
imp recl = recadd it

orrect =rec;

theoremsend#1, rec = rec add it
or rec =rec;

theorem send, verification(send);

send uses send # 1? and computessend%.

proof tree:

8| send

? VC1:
send # 1

% computes:
. computessend
71 U: print status SimpleSend;
SimpleSend is proved.
72 U: quit;

Type CONTINUE to return to AFFIRM.

37

4. Proof of Rotate Twice

This property of the Rotate family is.considerably more difficult to prove than many others, due to a
tricky subsidiary deduction. This transcript is also supposed to illustrate a realistic proof attempt,
instead of a polished proof. The transcript shows the proof of one branch of the proof, including
many false starts. Notice the use of the profile entries. Unlike the other proofs in this volume, Rotate

Twice shows a number of profile entries (including automechanisms such as AutoNext) turned on.

Transcript file KGERHART>OAFFIRMTRANSCRIPT.8-NOV-80.2
is open in the AFFIRM system <AFFIRM>AFFIRM.EXE.120

1U: .
In this transcript, we will be proving a difficult property of a Rotate operation on sequences.
The basis data type for sequences doesn’t matter, so we will use a readily available one, for
Integer.

2 U: needs type sequenceofinteger;
compi)ed for AFFIRM on 7-Nov-80 12:03:27
file created for AFFIRM on 7-Nov-80 12:03:18
SEQUENCEOFINTEGERCOMS
(GERHART)SEQUENCEOFINTEGER.COM.1
3uU:)
: the needs command found the type in my directory (normally it would be retrieved from
CPVLIBRARY?). Hereitis:
4 U: print type sequenceofi$;

(sequenceofi$ => SequenceOfinteger) _
The $(Escape) denotes the rest of the type name.

‘ type SequenceOQfInieger,

declare dummy, ss, s, s1, s2: SequenceOfinteger;
declare «k,ii, i, i1,i2, j: Integer;

interfaces NewSequenceOfinteger. s apri, i apl s, seq(i), s1 join s2,
LessFirst(s), LessLast(s): SequenceOfinteger;

infix join, apl, apr;

interfaces isNew(s), Firstinduction(s), Induction(s), NormalForm(s),
i ins: Boolean; '

infix in; -
interfaces Length(s), First(s), Last(s): Integer;

axioms dummy=dummy = = TRUE,
NewSequenceOfinteger = sapri = = FALSE,
s apri = NewSeqguenceOfinteger = = FALSE,
sapri = staprit == ((s=s1)and (i=i1));

axioms iapl NewSequenceOfinteger = = NewSequenceOfinteger apr i,
iapl (sapril) = = (i apls)aprit;

axiom seq(i) = = NewSequenceOfinteger apr i;

axioms NewSequenceOfintegerjoins = = s,
(sapri)joins1 = = sjoin (i apl s1);

axiom LessFirst(s apr i)
: = = ifs = NewSequenceOfinteger
then NewSequenceOfinteger
eise LessFirst(s) apri;

axiom LessLast(s apri) = = s;
axiom isNew(s) = = (s = NewSequenceOfinteger);

axioms iin NewSequenceOfinteger = = FALSE,
iin(sapri1) = = (iinsor(i=i1));

axioms Length(NewSequenceOfinteger) = = 0,
Length(s apri) = = Length(s) + 1;

axiom First(sapri) = = ifs = NewSequenceOfinteger
theni
else First(s);

axiom Last(sapri) = = i;

rulelemmas NewSequenceOfinteger = i apls = = FALSE,

i apl s = NewSeguenceOfinteger = = FALSE;

rulelemmas s join (s1 apri) = = (s join s1) apri,
s join NewSequenceOfinteger = = s,
(i apl s1) join 82 = = iapl (s1 join s2),
(s join (i apl s1)) join s2
= = sjoin (i apl (s1 join s2)),
sjoin (s1joins2) = = (s join s1) joins2;

rulelemma LessFirst(iapls) = = s;

rulelemma LessLast(i ap!s)
= = if s = NewSequenceOfinteger
then NewSequenceOfinteger
elsei apl LessLast(s);

rulelemma iin (i1 apl's) = = (iinsor (i=i1));

rulelemma First(iapls) =

"

i;

rulelemma Last(iap!s) = = ifs = NewSequenceOfinteger
theni
else Last(s);

schemas Firstinduction(s)
= = cases(Prop(NewSequenceOfinteger), all ss, ii
(IH(ss)
imp Prop(ii apl ss))),

Induction(s)
= = cases(Prop(NewSequenceOfinteger), all ss, ii
('H(ss)
imp Prop(ss apr ii))),

NormalForm(s)
= = cases(Prop(NewSequenceOfinteger), all ss, ii (Prop(ss
aprii));

end {SequenceOfInteger) ;

5U:
Since this is a demio transcript, somenbody may be interesied in the profile.

| 6 U: profile ;

Do you want to Modify, See, or Read your profile? see [confirm]

your terminal characteristics:
TerminalLineWidth is 82

the printout modes:
LessOutputDesired is On
AverageNamelengthis 5
AxiomGrouping is On
LemmaGrouping is On
InterfaceGrouping is On
DefineGrouping is On
NeedsGrouping is On
NewPP is On
SchemaGrouping is On
UseORinProps is On
DummyVarName is dummy
ErrorTokensOutput is 15
ReportFlag is Off
RuleLHSPercentage is 49
ShowNormint is Off
ShowRuleSimplification is On
ShowRules is Off 4

. Typesininterfaces is Variables

the event history flags:
HistoryWindowSize is 6

the executive flags:
TextEditor is XED
Timer is Off .
CompileOption is Redeiine
UsingTed is Off

the information about files:
FreezeFileName is Frozen-AFFIRM
i.oadNeededTypes is On

the spelling correction flags:
DontAskJustTake is 40

the theorem prover flags:

42

AutoResume is Off
ListAppliedExprsis On
AutoCases is On

the Interlisp mode flags:
GarbageCollectionMessage is Off
GarbageCollectionPages is 40
BreakAccess is Off

the transcript information:
* AnnotatingTranscript is On
TranscriptFileName is AFFIRMTRANSCRIPT -

the profile information:
SaveOnlyChangedEntries is On
UserProfileFileName is --AFFIRMUserProfile--
EnquireAfterFreeze is Off
Enquirelnitially is Off
ReadAnotherProfileFile is On

the Knuth-Bendix flags:
CautiousCompletion is Off
" KBAxiomOrder is Inverse

the automatically-applied event flags:

AutoAnnotate is On
AutoCompile is Off
AutoFix is Off

" AutoFreeze is Ask
AutoGenvcs is Ask
Autolnfix is Off
AutolnvokelH is Off
AutoNext is On
AutoNormint is On
AutoPrintProof is Ask
AutoPrintProofTheorems is Ask
AutoReplace is Oft
AutoSave is Off
AutoSearch is Off
AutoSuftficient is Off
AutoUndo is Off

NOW do you want to modify the current profile? no [confirm]

Do you wish to save this profile? no [c_onﬁrm]

77U
Actually, I do want to modify the terminal line width to display better. The easy way is:

8 U: profile terminalline$ =$= =88;

" = Il?
TerminallineWidth: 838
=EVALQT

-Unexpected PROFILEENTRYNAME found in routine NIL.
(undefined routine!)
Parameters: (none)
EVALQT can’t be set to 88.
New value:
(... profile aborted: effects undone)

ouU:
Well, that brought up AFFIRM s breakfast. I typed a bad character. Trying again.
10 U: profile terminallinewidth =88;
~ TerminalLineWidth: 88
11 U:
Now I need an environment.
12 U: adopt sequenceofinte$;
(sequenceofinte$ => SequenceOfinteger)
New environment:
dummy, ss, s, s1, s2: SequenceOfinteger
k, ii, i, 11,12, j: Integer
13U: .
The concept of interest is sequence rotation, both ways.
14 U: define Rotate(s,i) = =if isNew(s) or i=0 then s

(... command input aborted)

15 U: define Rotate(s,i) = =if isNew(s) then s else if i=0 then s else if i<0 then
Rotate(LessFirst(s) apr First(s), i+ 1) else Rotate(Last(s) apl LessLast(s), i-1);

Please provide an interface declaration for Rotate (then type ok; to continue).

16(1) U: interface Rotate(s,i):SequenceOfInteger;

17 (1) U: ok;

define Rotate(s, i)
= = if (s = NewSequenceOfinteger) or (i =0)
thens
else if iKO
then Rotate(LessFirst(s) apr First(s), i+ 1)
else Rotate(Last(s) apl LessLast(s), i-1);

18 U:
Note the change in form, adding an ‘or’ for the first two conditionals.

18 U:
The property of interest is:

20u: try RTwice, Rotate(Rotate(s,i),j) = Rotate(s,i+j);

Making node RTwice a theorem.
‘RTwice is untried.

alls, i, j (Rotate(Rotate(s, i), j) = Rotate(s, i +]))
21U
The usual approach is to dive into an induction on one of the integer parameters. Let’s try L

22 U: employ Induction(i);

Case 0: Prop(0) remains to be shown.

Case DIFFERENCE: allii ((ii <= 0) and IH(ii) imp Prop(ii-1)) remains to be shown.
Case PLUS: allii ((0 <= ii) and IH(ii) imp Prop(ii + 1)) remains to be shown.

(0:)

all s, j (Rotate(Rotate(s, 0). j) = Rotate(s, j))

23U: invoke Rotate|2|;
TRUE

. Going to leaf DIFFERENCE:.

allii’, s, j

((i <= 0) and IH(i’", 1 {RTwice))
imp Rotate(Rotate(s, ii’-1), j)
= Rotate(s, i’ +j - 1))

24 U: invoke Rotate|2|;

alli’, s, j
((i’ <= 0)and IH(i’*, 1 {RTwice})
imp if s = NewSequenceOfinteger
then Rotate(s, j) = Rotate(s, ii'+j - 1)
else Rotate(Rotate(LessFirst(s) apr First(s), ii’), j)
= Rotate(s, ii' +j- 1))

25 U: invoke Rotate|2,3|;

allii’, s, j
((i <= 0) and IH(i", 1 {RTwice})
imp if s = NewSequenceOfinteger
. then Rotate(s, j) = s
elseif Rotate(LessFirst(s) apr First(s), i") = NewSequenceOfinteger
orj=0
then Rotate(LessFirst(s) apr First(s), ii’)
= Rotate(s, ii'+j- 1)
else if j<O .
then Rotate(LessFirst(Rotate(LessFirst(s) apr First(s)

ii"))
apr First(Rotate(LessFirst(s) apr First(s),
~iin),
j+1)
= Rotate(s, ii’+j- 1)
else Rotate(Last(Rotate(LessFirst(s) apr First(s),
ii’))
apl LessLast(Rotate(LessFirst(s) apr First(s)

i),
i-1)
= Rotate(s, i’ +j - 1))
26 U: .
Did that wrong, wanted 1,2 Rotates.

27 U: undo;

invoke undone.

28 U: invoke Rotate|l1,2|;

allii'y s, j
((i <= 0) and IH(i*, 1 {RTwice})
imp s = NewSequenceOfinteger
or Rotate(Rotate(LessFirst(s) apr First(s), ii’), j)
= Rotate(s, ii' +j- 1))

28 U:
Time to use the induction.

3oU: invoke IH;

allii’, s, j (some ', |’
(<=0
and Rotate(Rotate(s’, ii’), ') = Rotate(s’, i’ +j’)
imp s = NewSequenceOflnteger
or Rotate(Rotate(LessFirst(s) apr First(s), ii'). j)
= Rotate(s, ii'+ - 1)))

31U put s’ =LessFirst(s) apr First(s) and j’=j;

allii’, s, j-
(i'<=0
and Rotate(Rotate(LessFirst(s) apr First(s), ii’).

)
= Rotate(LessFirst(s) apr First(s), i’ + j)
imp s = NewSequenceOfinteger
or Rotate(Rotate(LessFirst(s) apr First(s), ii’),
i
= Rotate(s, i’ + j- 1))

32U: replace;

allii’, s, j
(i'<=0
and Rotate(Rotate(LessFirst(s) apr First(s), ii’).
)
= Rotate(LessFirst(s) apr First(s). ii’ + j)
imp s = NewSequenceOfinteger
or Rotate(LessFirst(s) apr First(s), ii’ + j)
= Rotate(s, i’ + j- 1))

33U:

47

Now it’s down 1o making the last Rotates match.

34 U: invoke Rotate|-1];

allii', s, j
(i"<="0
and Rotate(Rotate(LessFirst(s) apr First(s), ii'),
)
= Rotate(LessFirst(s) apr First(s), i’ + j)
imp s = NewSequenceOfinteger
orifii’ +j-1=0
then Rotate(LessFirst(s) apr First(s),
i’ + j)
=S
else ii' + j<=0
or Rotate(LessFirst(s) apr First(s),
i +J)
= Rotate(Last(s) ap! LessLast(s),

i’ +j-2)

35U
Let’s delete the used equality. This is not recommended style, but we have never implemented
the corresponding non-editor command.

36 U: @;

tty:

1*5 2 (delete 3)

ok

Please summarize what you did, end with '}’
deleted hypotheses;

allii', s, j
(ii'<=0
imp s = NewSequenceOfinteger
orifii +j-1=0
then Rotate(LessFirst(s) apr First(s),
it +)
=8
else i’ +j<=0
or Rotate(LessFirst(s) apr First(s),
i’ + j)
= Rotate(Last(s) ap! LessLast(s),
i’ +j-2)

37 U: suppose isNew(s);

(yes:)
TRUE
Going to leaf no:.

allii’, s, j
((s ~= NewSequenceOfinteger) and (ii' <= 0)
impifit +j-1=0
then Rotate(LessFirst(s) apr First(s),
i’ + j)
=S
else ii'+j<=0
~or Rotate(LessFirst(s) apr First(s),

i" +)
= Rotate(Last(s) ap! LessLast(s),

i’ +j-2)

38 U:
I want 1o break up the cases and re-arrange the expression.

3o u: split;
(first:)
allii’y s, j

{ (s~= NewSequenceOflntegef) and (ii'<= 0)
andii’ +j-1=0 .
imp Rotate(LessFirst(s) apr First(s), ii’ + j)
= S)

40 U:
A rearrangement of the Integer expression is needed. This requires explicitly applying an
“Integer Fact" lemma, as Affirm’s Integer Simplifier doesn’t handle this case.

41 U: apply AddSwitch, i+j=k eqv (i=k-j and j=k-i);

somei k,j'(i+j' =K
eqv (i = k-j’)and (' = k-i))

42yu:puti=ii’+jand ’=-1and k=0;

allii’, s, j
(i+ =1
and -1 = (i’ + j)
andii’ +j-1=0
and s ~ = NewSequenceOfinteger

andii'<=0
imp Rotate(LessFirst(s) apr First(s), i’ + j)
= S) .

a3U: replace;
allii’, s, j
((ii" +j = 1)and (s ~= NewSequenceOfinteger)
andii'<=0

imp Rotate(LessFirst(s) apr Firsi(s), 1) = s)

44 U: invoke Rotate;

allii’, s, j
((i' +j = 1)and (s ~ = NewSeqguenceOfinteger)
andii'<=0

imp Rotate(First(s) ap! LessFirst(s), 0) = s)

- 45U:invoke Rotate;

allii’y s, j ,
((i' +j = 1)and (s ~ = NewSequenceOfinteger)
andii'’<=0 :
imp First(s) apl LessFirst(s) = s)

46 U:
And that’s a normal form property.

47 U: employ NormalForm(s);

Case NewSequenceOfinteger: Prop(NewSeguenceOfinteger) proven.
Case apr: all ss, ii (Prop(ss apr ii)) remains to be shown. '
(apr:)
all ss’,ii', i, j
((i+j=1)and(i<=0)
imp (ss' = NewSequenceOfinteger) or (First(ss') apl LessFirst(ss’) = ss))

48 U:
Whoops, it requires Induction, so it should be a lemma.

49 U: undo;

employ undone.

50

50 U: apply FirstSplit, ~isNew(s) imp First(s) apl LessFirst(s)=s;

some s’ ((s’ = NewSequenceOfinteger) or (First(s’) apl LessFirst(s’) = s’))

51 U: search;

1/1: 8’ =8
Proved by chaining and narrowing
using the substitution

. TRUE"
Going to leaf second:.

allii’, s, j
((s ~= NewSeguenceOfinteger) and (ii’ <= 0)
imp iit+j-1=0 '
orii’ +j<=0
or Rotate(LessFirst(s) apr First(s), ii’ + j)
= Rotate(Last(s) ap! LessLast(s),
it +j-2)

52U:

The integer terms show that ii’+j>=2 in the Rotate equality, which will allow invoking it
through to maich. First, let’s draw out the fact.

53 U: suppose i’ +j>=2;

(yes:)
allii, s, j
((2<=ii" + j)and (s ~ = NewSequenceOfinteger)
andii'<{=0

imp ii'+j-1=0
or Rotate(LessFirst(s) apr First(s), i’ + j)
= Rotate(Last(s) ap! LessLast(s),
i’ +j-2)

'54 U: invoke Rotate;

alli’, s, j
((2<=ii’ + j)and (s ~ = NewSequenceOfinteger)
andii'<=0

imp ii'+j-1=0
or Rotate(First(s) apl LessFirst(s),

i+ j-1)
= Rotate(Last(s) apl LessLast(s),
i’ +j-2)

55 U: invoke Rotate;

allii', s, j
((2<= i’ + j)and (s ~ = NewSequenceOfinteger)
andii'<=0

imp ii'+j-1=0
orif LessFirst(s) = NewSegquenceOfinteger
then Rotate(NewSequenceOfinteger apr First(s),
i'+j-2)
= Rotate(Last(s) ap! LessLast(s),
i +§-2)
else Rotate(Last(LessFirst(s))
apl First(s) ap! LessLast(LessFirst(s)),
it +j-2)
= Rotate(Last(s) ap! LessLast(s),
it +j-2)

56 U:
‘ All these selections should simplify with NormalForm.

57 u: employ NormalForm(s);

Czse NewSequenceOfinteger: Prop(NewSequenceOfinteger) proven.
Cese apr: all ss, ii (Prop(ss apr ii)) remains to be shown.
(apr:)
allss’, ii’, ii, j
((2<=ii+j)and (ii<=0)
imp ii+j-1=0
orifss' = NewSequenceOfinteger
then Rotate(NewSequenceOfinteger apr ii’,
i+j-2)
= Rotate(ii’ apl ss’,ii + j-2)
else Rotate(ii’ apl (First(ss’) apl LessFirst(ss’)),
ii+j-2)
= Rotate(ii’ apl ss', ii + j-2))

58U: replace;

allss’, ii’, ii, j
((2<=ii + j)and (ii<= 0)
imp (i + j-1 = 0)or(ss’ = NewSeguenceOfinteger)
or Rotate(ii’ apl (First(ss’) ap! LessFirst(ss’)),

52

i+j-2)
= Rotate(ii’ apl ss’, ii + j-2))

sg u: apply FirstSplit;

some s ((s = NewSequenceOfinteger) or (First(s) ap! LessFirst(s) = s))

60 U: put s=ss’;

all ss’, ii", ii, j
(ss’ ~ = NewSequenceOfinteger
and First(ss') apl LessFirst(ss') = ss’
and2<=ii +j
andii<=0
imp ii+j-1=0
or Rotate(ii’ apl (First(ss’) apl LessFirst(ss')),
i +j-2)
= Rotate(ii’ apl ss’, ii + j-2))

61U: replace;

TRUE
Going to leaf no:.

allii', s, j
((i* + j<2)and (s ~= NewSequenceOfinteger)
andii'<=0

imp ii’+j-1=0
orii' +j<=0
or Rotate(LessFirst(s) apr First(s), i’ + j)
= Rotate(Last(s) ap! LessLast(s),
i’ +j-2)) .

62 U: apply AddSwitch;
somei, k,j'(i+j' =Kk
eqv (i = k") and (i’ = k-i))
63U: put i=ii’+j and j’=-1 and k=0;
allii*, s.j
(ifii* +j =1

then -1~ = -(i' +j)
andii' +j-1~=0

andii' +j<2
and s ~ = NewSequenceOfinteger
andii'<=0 :
imp Rotate(LessFirst(s) apr First(s)
it +j)
= Rotate(Last(s) ap! LessLast(s),
it +j-2)
else ii'+j-1~=0
andii’ + j<2
and s ~ = NewSequenceOfinteger
andii'<=0
imp i’ +j<=0
or Rotate(LessFirst(s) apr First(s),
i’ +)
= Rotate(Last(s) apl LessLast(s),
i+ j-2)

64 U: replace;

TRUE
_CGoing to leaf PLUS..

allii’, s, j
((0<=ii’) and IH(ii*, 1 {RTwice})
. . imp Rotate(Rotate(s, ii' + 1), j)
= Rotate(s,ii’ + j+1))

85 U:
Now we have to do the same thing on this side.

66 U: print proof;

theorem RTwice, Rotate(Rotate(s, i), j) = Rotate(s, i +j);
RTwice uses FirstSplit? and AddSwitch?.

proof tree:
22:| RTwice

employ Induction(i)
23: 0:2 invoke Rotate | 2 |
23: (proven!)
24. DIFFERENCE:

3 invoke Rotate | 2 |
24: 6 cases
28: 7 invoke Rotate | 1, 2 |
30: 8 invoke IH
31: 9 put (s' = LessFirst(s) apr First(s)) and (' =)
32: 10 replace

R

34: 11 invoke Rotate | - 1 |
34: 12 cases
36: 13 @ {deleted hypotheses)
37: 14 suppose isNew(s)
37: yes:
Immediate
38: no:16 split
41: first:
17 apply AddSwitch
42: 20 put i=ii'+j
and (' = -1)and (k=0)
43: 21 replace
44: 22 invoke Rotate
45: - 23 invoke Rotate
50. . 24 apply FirstSplit
51 26 put s’ = s {search}
51: (proven!)
53: second:{RTwice, DIFFERENCE:, no:}
18 suppose ii' + j>=2
54: - yes:
28 invoke Rotate
55: 30 invoke Rotate
55: 31 cases
57: 32 employ NormalForm(s)
NewSequenceOfinteger:
) Immediate
57: _ apr:
' 33 cases
58: 34 replace
58: 35 apply FirstSplit
60: 36 put s=s¢’
61: 37 replace
(proven!)
62: no:{RTwice, DIFFERENCE:, no:, second:}
29 apply AddSwitch
63: 38 put i=ii'+]j
and (i' = -1) and (k=0)
64: 39 replace
(proven!)
2> PLUS:{RTwice}
4

theorem FirstSplit, ~isNew(s) imp First(s) ap! LessFirst(s) = s;

theorem AddSwitch, i+j =k
eqv (i = k-j)and (j = k-i);

....................

67 U: assume Addswitch;
(Addswitch => AddSwitch)
68 U: try firstsplit;

(firstsplit => FirstSplit)
FirstSplit is untried.

all s ((s = NewSeguenceOfinteger) or (First(s) apl LessFirst(s) = s))
" 69 U: employ Induction(s);

Case NewSequenceOfinteger: Prop(NewSequenceOfinteger) proven.
Case apr: all ss, ii (IH(ss) imp Prop(ss apr ii)) remains to be shown.
(apr?)
all'ss’,ii’ (IH(ss', 25 {FirstSplit})
imp (ss’ = NewSequenceOfinteger) or (First(ss') apl LessFirst(ss’) = ss')

)

7o u: invoke IH;

TRUE
FirstSplit proved. v '
Automatically print the proof of FirstSplit? no [confirm]

55

Appendix |
Types Used in Proofs

1.1. SetOfElemType
type SetOfElemType,

needs type ElemType;

declare reflexive, s, s1, s2, ss: SetOfElemType;
declare i, i, i1, i2, x: ElemType;

interfaces NewSetOfEiemType, s add x, s rem i, s diff s1, s int s1, s union s1
: SetOfElemType;

infix union, diff, int, rem, add;

inte_rfaces i in's, isNewSetOfElemType(s), s subset s1, Induction(s), NormalForm(s)
: Boolean;

infix subset, in;

axioms reflexive = reflexive = = TRUE,
NewSetOfElemType = saddi = = FALSE,
sadd i = NewSetOfElemType = = FALSE;

axioms NewSetOfElemType rem i
(sadd x) remi
== ifx=i
thensremi .
else (s remi) add x;

NewSetOfElemType,

axioms NewSetOfElemType diff s
(s add x) diff s1
= = if xin si
then s diff s1
else (s diff s1) add x;

NewSetOfElemType,

axioms NewSetOfElemTypeints1 = = NewSetOfElemType,
(s add x) int s1
== ifxinsi
then (s int s1) add x
elsesintsi;

axioms NewSetOfElemTypeunionst = = si,
(s add x) union s1 = = (s union s1) add x;

axioms xin NewSetOfElemType = = FALSE,
iin{(saddx) = = ((i=x)oriins);

axiom isNewSetOfElemType(s) = = (s = NewSetOfElemType);

define s=s1 = = (s subsci<1and s1 subsets),

s subset s1
==allx'(xXinsimpx'inst);

schemas Induction(s)
= = cases(Prop(NewSetOfElemType), all ss, ii { IH(ss)
imp Prop(ss add ii))),

NormalForm(s)
= = cases(Prop(NewSetOfElemType), all ss, ii (Prop(ss add ii})));

end {SetOfElemType} ;

1.2. SequenceOfinteger
type SequenceQfInteger,

declare dummy, ss, s, s1, s2: SequenceOfinteger;
declare k. ii, i, i1, i2, j: Integer;

interfaces NewSequenceOfinteger, s apri, i apl s, seq(i), s1 join s2, LessFirst(s),

LessLast(s), dedup(s), reverse(s), Rotate(s, k), Initial(s, k),
~ Lesslnitial(s, k), deletepth(s, k), seqrange(i, j), sequpto(i)
: SequenceOfinteger;

infix join, apl, apr;

interfaces isNewSequenceOfinteger(s), s1 subseq s2, Firstinduction(s). Induction(s),

NormalForm(s), i in s,-nodups(s), disjoint(s1, s2): Boolean;
infix in, subseq;
interfaces Length(s), First(s), Last(s), pth(s, k): Integer;

‘axioms dummy=dummy = = TRUE,

NewSequenceOfinteger = sapri = = FALSE,
sapri = NewSequenceOfinteger = = FALSE,
sapri = stapril = = ((s=s1) and (i =i1));

axioms iapl NewSequenceOfinteger = = NewSequenceOfinteger apr i,
iapl (saprit) = = (i apls)aprii; :

axiom seq(i) = = NewSequenceOfinteger apr i;
axioms NewSequenceOfinteger joins = = s,
(sapri)joinst = = sjoin (i apl s1);

_axiom LessFirst(s apr i)
= = ifs = NewSequenceOfinteger
then NewSequenceOfinteger
else LessFirst(s) apr i;

axiom LesslLast(sapri) = = s;

axioms dedup(NewSeguenceOfinteger) = = NewSequenceOfinteger,

89

dedup(s apr i)
== ifiins
then dedup(s)
else dedup(s) apri;

axioms reverse(NewSequenceOfinteger) = = NewSequenceOfinteger,
reverse(s apri) = = iapl reverse(s);

axiom isNewSequenceOfinteger(s) = = (s = NewSequenceOfinteger);

axioms si1subseq (s apri)
== ((s1 = NewSequenceOfinteger) or s1 subseq s
or LessLast(s1) subseq s and (Last(s1) = i)),
s subseq NewSequenceOfinteger = = (s = NewSequenceOfinteger);

axioms iin NewSequenceOflnteger = = FALSE,
iin(sapril) = = (iinsor(i=it));

axioms nodups(s apri) = = (nodups(s) and ~(iin s)),
nodups(NewSequenceOfinteger) = = TRUE;

axioms disjoint(NewSequenceOfinteger, s) = = TRUE,
disjoint(s apri, s1) = = (disjoint(s, s1) and ~(i in s1));

axioms Length(NewSequenceOfinteger) = = O,
Length(s apri) = = Length(s) + 1;

axiom First(s apri) = = ifs = NewSequenceOfinteger
theni
else First(s);

axiom Last(sapri) == i

rulelemmas NewSequenceOfinteger
i apl s = NewSequenceOfinteger

iap! S== FALSE,
= FALSE;

rulelemmas sjoin(s1apri) = = (sjoinsi1)apri,
- sjoin NewSequenceOfinteger = = s,

(iapls1) joins2 = = iapl (s1join s2),
(sjoin (iapl s1)) join 82 = = sjoin (i apl (s1 join s2)),
sjoin (s1 join s2) = = (sjoin s1)join s2;

rulelemma LessFirst(i apls) = = s;

rulelemma LessLast(i apls) = = ifs = NewSequenceOfinteger

60

then NewSequericeOfinteger
elsei apl LesslLast(s);

rulelemma iin (i1 apls) = = (iinsor (i=i1));
rulelemma nodups(i ap! s) = = (nodups(s) and ~(i in s));
- rulelemma First(iapls) = = i;

rulelemma Last(iap!s) = = if s = NewSequenceOfinteger
theni
else Last(s);

define Rotate(s, k)
= = if (s = NewSeguenceOfinteger) or (k=0)
thens '
else Rotate(LessFirst(s) apr First(s), k-1),

Initial(s, k)
== if (s = NewSequenceOfinteger) or (k= 0)
then NewSequenceOfinteger
else First(s) apl! Initial(LessFirst(s), k-1),

Lesslnitial(s, k) .
= = if (s = NewSequenceOfinteger) or (k = 0)
thens :
else Lesslnitial(LessFirst(s), k-1),

deletepth(s, k)

. ==ifk=1
then LessFirst(s) _
else First(s) ap! deletepth(LessFirst(s), k-1),

segrange(i, j)
==ifj<i -
then NewSequenceOfinteger
else seqrange(i, j-1) aprj,

pth(s, k)
==ifk=1
then First(s)
else pth(LessFirst(s), k-1),

sequpto(i) = = seqrange(1, i);
~ schemas Firstinduction(s)

= = cases(Prop{NewSequenceOfinteger), all ss, ii { IH(ss)
' imp Prop(ii ap! ss))),

Induction(s)
= = cases(Prop(NewSequenceOfinteger), all ss, ii (IH(ss)
imp Prop(ss apr ii))),

NormalForm(s)
= = cases(Prop(NewSequenceOfinteger), all ss, ii (Prop(ss apr ii)));

end {SequenceOfInteger} ;

61

62

References

[Musser 80] Musser, D. R., "On proving inductive properties of abstract data types," in Proceedings
of the Seventh ACM Symposium on Principles of Programming Languages, ACM SIGPLAN,
1880. '

	Table of Contents
	Preface
	1 Proof of subseq transitivity
	2 The Knuth-Bendix Algorithm on Group Theory Axioms
	3 Simple Send VCs
	4 Proof of Rotate Twice
	Appendix I Types Used in Proofs
	References

