
AFFIRM

-

AFFIRM Annotated Transcripts
Raymond L. Bates and Susan L. Gerhart, Editors

AFFIRM

Annotated Transc ripts

Raymond L. Bates and Susan L. Gerhart, Editors

Version 2.0 - February 19,1981

Corresponds to AFFIRM Version 1.21

USC Information Sciences Institute

4676 Admiralty Way

Marina Del Rey, California 90291

(213) 822-1511 ARPANET: AFFIRM@ISIF

Copyright @ 1981, USClinformation Sciences Institute

The AFFIRM Reference Library

AFFIRM is an experimental interactive system for the specification and verification of abstract data
types and programs. It was developed by the Program Verification Project at the USC Information
Sciences Institute (lSI) for the Defense Advanced Research Projects Agency. The Reference Library
is composed of five documents:

Reference Manual
A detailed discussion of the major concepts behind AFFIRM presented in terms of the abstract
machines forming the system's structure as seen by the user.

Users Guide
A question-and-answer dialogue detailing the whys and wherefores of specifying and proving
using AFFIRM.

Type Library
A listing of several abstract data types developed and used by the lSI Program Verification
Project. The data type specifications are maintained in machine-readable form as an integral
part of the system.

Annotated Transcripts
A series of annotated transcripts displaying AFFIRM in action, to be used as a sort of workbook
along with the Users Guide and Reference Manual.

Collected Papers
A collection of articles authored by members of the lSI Program Verification Project (past and
present), as well as an annotated bibliography of recent papers relevant to our work.

Program Verification Project Members

The USC/Information Sciences Institute Program Verification Project is headed by Susan L. Gerhart,
with members Roddy W. Erickson, Stanley Lee, Lisa Moses, and David H. Thompson .. Past project
members include Raymond L. Bates, Ralph L. London, David R. Musser, David G. Taylor, and David S.
Wile.

Cover designs by Nelson Lucas.

Special dedication to Affirmed, the only race horse named after a verification system.

This research was supported by the Defense Advanced Research Projects Agency and the Rome Air
Defense Command. Views and conclusions are the authors'.

Table of Contents
,. Proof of subseq transitivity

2. The Knuth·Bendix Algorithm on Group Theory Axioms

3. Simple Send ves

4. Proof of Rotate Twice

Appendix I. Types Used in Proofs

1.1. SetOfElemType
1.2. SequenceOflnteger

,
10

16

38

56

56
58

Preface
The AFFIRM Annotated Transcripts volume illustrates a number of features of AFFIRM. Each

transcript is prefaced with a short description of what the transcript deals with and other highlights.

All of these transcripts are from the current system as of the writing of this volume. Some of these

proofs are highly polished and many people contributed to them.

1 . P roof of su bseq transitivity
The main point of this proof, aside from its 'historical' significance and that it took us a week to

find, is the reasoning involved in disjunctions. The axiomatic definition of subseq is

s sub seq NewSequenceOflnteger == (s=NewSequenceOflnteger)

s subseq (sl apr i) == (s=NewSequenceOflnteger
or s subseq s1
or Last(s)=; and LessLast(s) sub5eq 51)

The creation of the axioms for subseq was s~imulated by John Ulrich's posing this problem to us

during his visit to lSI. The first axioms we came up with were like

NewSequenceOflnteger 'subseq s == TRUE

(s apr i) sub5eq NewSequenceOflnteger -- FALSE

(s apr i) sub seq (s1 apr il) ==
(i=il and s subseq sl or s apr i sub5eq s1)

This formulation 'follows the way one would program subseq, chopping off end elements

. s'uccessively and comparing them. The proof of subseq transitivity using these axioms was never

accomplished because we could not find any way to use our usual Induction. (Moore accomplished'

this same proof at SRI using a rather complicated ordering and their generalized induction

~echanism.) With the change in axioms the following proof was easily found. Gerrard Terrine of IRIA

pointed out to us that our second axioms have the seed of transitivity built into them.

There are some lessons here. First, you have to decide whether to have many induction methods

or just a few schemas. We have chosen the latter course, whereas Boyer and Moore extensively

pursued the former. Second, these axioms are not programs. The variability of expressiveness in

axioms beyond the usual recursion seems worth using.

See Appendix I on page 56 for a listing of the type SequenceOflnteger.

2

Transcript file <RBATES)AFFIRMTRANSCRIPT.14-NOV-SO.7

is open in the AFFIRM system <AFFIRM)A~FIRM.EXE.120

1 U:
We are increasing the linewidth so the transcript fills a printed page (the default value is 79).

2 U: profile TerminalLine Width = 88;

TerminalLineWidth: 88

3 U: needs type SequenceOfInteger;

compiled for AFFIRM on 7 -Aug-SO 12:38:59
file created for AFFIRM on 7 -Aug-SO 11 :10:22
SEQUENCEOFINTEGERCOMS

(File created under Affirm 108)
<PVLIBRARY>SEQUENCEOFINTEGER.COM.3

4U:
The needs command gives us the current SequenceojJnteger. The message about "(File created
_ ..)" states that the loaded version of SequenceOjJnteger wasll't created in the current version of
Ajfinn, but the version difference is irrelevant. The library version of SequenceOjJnteger will
be different if you repeat this transcript.

5 U: declare sl,s2,s3:SequenceOfInteger;

s1, s2, s3: SequenceOflnteger

6 U: try subseqTrans, sl subseq s2 and s2 subseq s3 imp sl subseq s3;

Making node subseqTrans a theorem.

subseqTrans is untried.

all s1, s2, s3 (s1 subseq s2 and s2 subseq s3 imp s1 subseq s3)

7U:
It should be clear after studying the axioms that s3 is the most natural variable to ilJduct 017.,

since the axioms pen71ute the constructoTs through the second parameter position of subseq.

8 u:employ Induction(s3);

Case NewSequenceOflnteger: Prop(NewSequenceOflnteger) remains to be shown.

Case apr: all ss, ii (IH(ss) imp Prop(ss apr ii» remains to be shown.

(NewSequenceOflnteger:).
all s1, s2 (s1 subseq s2 and (s2 = NewSequenceOflnteger) imp s1 = NewSequenceOflnteger)

9 U: replace s2;

TRUE

10U:

'1 U: next;

We have proved the basis case (NewSequenceOjInteger) so offwe go to the induction step. We
could have turned on AutoNext. a profile entry, so we wouldn't have 10 explicitly do the next
command

Going to leaf apr:.

all ss', ii', s1, s2
IH(ss',1 {subseqTrans}) and s1 subseq s2

and (s2 = NewSequenceOflnteger) or s2 subseq ss'
. or LessLast(s2) subseq ss' and (Last(s2) = ii')

imp (s1 = NewSequenceOflnteger) or 51 subseq ss'
or LessLast(s1} subseq ss' and (Last(s1) = ii'»

12 U: suppose s2 = NewSequenceOfInteger ;

(yes:)
all ss', ii', s1, 52
.((s2 = NewSequenceOflnteger) and IH(ss', 1 {subseqTrans})

and s1 5ubseq s2
imp (s1 = NewSequenceOflnteger) or s1 subseq ss'

or LessLast(s1) subseq ss' and (Last(s1) = ii'»

13U:
We could have done a split instead, but sometimes it is harder to figure out what a split will do.

14 U: print proof;

theorem subseqTrans, s1 subseq s2 and s2 5ubseq s3 imp s1 subseq s3;

proof tree:
8:1 subseqTrans

employ Induction(s3)
9: NewSequenceOflnteger:

2 replace s2
(proven!)

12: apr:
3 suppose $2 = NewSequenceOflnteger

?) yes:

4

4
? no:5

15 U: replace s2;

TRUE

. 16U: next;

Going to leaf no:.

all ss', ii', 51, 52
(52 - = NewSequenceOflnteger) and IH(5S', 1 {subseqTrans})

and s1 subseq s2
and 52 5ubseq ss'

or LessLast(s2) subseq ss' and (Last(s2) = ii'}
imp (s1 = NewSequenceOfinteger) or s1 subseq ss'

or LessLast(s1} subseq ss' and (Last{s1) = ii'»

17U:
The other case of event 12: l1ot(s2 =NewSequenceOj1nteger}.

18 U: suppose s2 subseq 55' ;

. (yes:)
all ss', ii', s1, s2

s2 sub5eq ss' and (52 - = NewSequenceOflnteger)
and IH(ss', 1 {subseqTrans}}
and s1 subseq s2

imp· (s1 = NewSequenceOflnteger) or s1 subseq ss'
or LessLast(51) subseq S5' and (Last{s1) = ii'»

19 U: inyoke IH ;

Now we need the Induction Hypothesis to link s1, ss'. and s2 transitively.

all S5', ii', s1, s2 (some s1', s2'
(s2 sub5eq 5S' and (52 - = NewSequenceOflnteger)

and s1' sub5eq s2' and 52' subseq S5' imp s1' subseq S5'
and s1 subseq s2

imp (s1 = NewSequenceOfinteger) or s1 subseq ss'
or LessLast(51) subseq ss' and (Last{s') = ii')))

20U:

21 U: search;

After invoking the induction hypothesis we have to instantiate sl' and s2: the free ,'ariables of
the prop we are inducting on. Let's see if~ canjind it

1/13: (s2' = ss') and (51' = 52)
2/13: 52' = 52

1/3: 51' = 82
2/3: 51' = s1

Proved by chaining and narrowing
u5ing the substitution

(S2' = s2) and (51' = s1)

TRUE

22 U: next;

Going to leaf no: .

.
all ss', ii', s1, s2
(-{s2 subseq ss'} and (s2 - = NewSequenceOfinteger)

and IH{ss', 1 {subseqTrans}}

and s1 subseq s2
and LessLast{s2} subseq ss'
and Last(s2) = ii'

imp (s1 = NewSequenceOflnteger) or s1 subseq ss'
or LessLast(s1) subseq ss' and {Last(s1} = ii')}

23U:
The other case from event 18: not(s2 subseq ss,. The system doesl1't reali:ze that if s2 isn't
NewSequeliceOjlnteger then s2= LessLast(s2) apr Last(s2), but by employing the
NormalForm schema we will enumerate the cases that 52 can take on (NewSequenceOjlnleger
or apr) thusjiring the axiomsJor subseq wilhrespect to 52.

24 U: employ NormaIForm(s2) ;

Case NewSequenceOflnteger: Prop(NewSequenceOflnteger} proven.
Case apr: all ss, ii (Prop(ss apr ii» remains to be shown.
(apr:)
all ss', ii', SS, ii, s1

-«ss' apr ii') subseq ss) and IH(ss, 1 {subseqTrans})·
and 51 - = NewSequenceOflnteger
and s1 subseq ss'

or LessLast(s1) subseq ss' and (Last(s') = ii')
and ss' subseq ss

--.~,.-:-:-::---~-----~-- ,-. --.~ .. ;.--:.:--.-.. _----

6

and ii' = U
imp s1 subseq ss _

or LessLast(s1) subseq ss and (Last(s1) = U»

25 U: replace ii ;

all ss' , ii', ss, ii, s1'
-({ss' apr ii') subseq ss) and IH(ss, 1 {subseqTrans})

imp s1 = NewSequenceOflnteger
or if s1 subseq ss'

then ss' subseq ss and (ii' = ii)
imp s1 subseq ss

or LessLast(s1) subseq ss
and Last{s1) = ii'

else LessLast(s1) subseq ss'
and Last(s1) = ii'
and ss' subseq ss
and ii' = ii

imp s1 subseq ss or LessLast{s1) subseq ss)

26 U: suppose sl subseq ss' ;

(yes:)
all ss', ii', ss, ii, s1

, s1 5ubseq ss' and -«ss' apr ii') subseq ss)
a~d .IH(ss, 1 {subseqTrans})
and s1 - = NewSequenceOflnteger
and ss' subseq ss
and ii' = ii

imp 51 SUb5eq ss
or LessLast(s1) subseq S5 and (Last(s1) = ii'»

27 U: invoke IH ;

all ss', ii', SS, ii, s1 {some s1 " s2
(s1 subseq ss' and -«ss' apr ii') subseq ss)

and s1' subseq s2 and s2 subseq ss imp s1' subseq ss
and 51 ~ = NewSequenceOflnteger
and ss' subseq ss
and ii' = ii

imp s1 subseq ss
or LessLast(s1) subseq ss and (Last(s1) = ii')))

28 U: search;

1/16: (s2 = 6S') and (s1' = 51)

Proved by chaining and narrowing
using the substitution

(s2 = ss') and (s1' = s1)

TRUE

. 29U: next;

Going to leaf no:.

all ss', ii', ss, ii, s1
-(s1 subseq ss')

and -«ss' apr ii') subseq ss)
and IH(ss, 1 {subseqTrans})
and s1 - = NewSequenceOflnteger
and LessLast(s1) subseq ss'
and Last(s1) = ii'

·and ss' subseq S5
and ii' = ii

imp s1 subseq ss or LessLast(51) 5ubseq ss)

3OU:
The other case a/step 26 : not(sI subseq ss').

3~ U: im'oke IH ;

all 5S', ii', ss, ii, 51 (some 51 " s2
(-(s1 subseq ss')

and -«S5' apr ii') sub5eq ss)
and s1' 5ubseq s2 and s2 sub5eq ss imp 51' subseq ss
and s1 - = NewSequenceOflnteger
and LessLast(s1} subseq ss'

and Last(s1) = ii'
and ss' subseq ss
and ii' = ii

imp s1 subseq ss or LessLa5t(51) 5ubseq 55»

32 U: search;

1/17: {s2 = ss'}and{s1' = s1}
2/17: (52 = 5S) and (51' = ss' apr ii')
3/17: s2 = S5' apr ii'
4/17: s1' = ss' apr ii'

1/5: s2 = ss
2/5: s2 = ss' apr ji'

(

8

3/5: s2 = ss'
4/5: s2 = s1
5/5: s2 = LessLast{s1)

5/17: (s2 = ss') and (s1' = LessLast(s1»
Proved by chaining and narrowing
using the substitution

(s2 = 55') and (s1' = LessLast(51»

TRUE

5ubseqTrans proved.

33U:
We are all done with subseqTrans, let's review the proof.

34 U: print proof;

theorem subseqTrans, s1 subseq s2 and s2 subseq s3 imp s1 subseq s3;

proof tree:.
8:! subseqTrans

. employ lnduction(s3)
9: NewSequenceOflnteger:

2 replace 52
.. (proven!)

12: apr:
3 suppose s2 = NewSequenceOflnteger

15: yes:
4 replace s2
(proven!)

18: no:5 suppose s2 subseq ss'
19: yes:

6 invoke IH
21: 8 put (52' = s2) .and (s1' = s1) {search}
21: (proven!)
24: no:7 employ NormaIForm{s2)

NewSeq uenceOfl nteger:
Immediate

25: apr:
10 replace ii

26: 11 suppose s1 subseq ss'
27: y~s:

12 invoke IH
28: 14 put (s2 = ss') and (s1' = s1) {search}
28: (proven!)
31: no:13 invoke IH
32: 16 put s2 = ss'

ar:d s1' = LessLast{s1) {search)

32:·) (proven!)

35 U: quit;

Type CONTINUE to return to AFFIRM.

10

2. The Knuth-Bendix Algorithm on Group Theory
Axioms

This transcript shows the Knuth·Bendix algorithm gener~ting a long sequence of rules. You will

note we start with 3 rules, the 3 axioms which define a group:

axiom e· op x = x;
axiom inv(x) op x = e;
axiom (x op y) op Z = x op (y op z)

ana 2nd up with the 3 rules above and 7 rule lemmas:

inv(e) = e
. inv(inv(y)) = y

inv(y op y' ') = inv(y' ') op inv(y)
. inv(y) op (y op z) = Z

Z op e = z
y op (inv(y) op z) = Z
Y op inv(y) = e

This process is not automatic. You will note in the middle of the transcript when the system is

proposing a new rule we have to reverse its direction (see page 14).

The rule lemmas could have been proven as theorems by induction using the first three axioms.

The "induction" accomplished by Knuth·Bendix isdiscussed in [Musser 80].

Transcript file (RBATES)AFFIRMTRANSCRIPT.7·NOV·80.3
is open in the AFFIRM system (AFFIRM)AFFIRM.EXE. 120

1 U: print file (affirm)grp1.axioms ;

(AFFIRM)GRP1.AXIOMS.3:

type Grp1;
. declare x,y,z:Grp1;

interface e:Grp1 ;
intei'face inv(x),op(x,y):Grp1;
infix op;
axiom (x = x) = TRUE;
axiom e op x = x;
axiom inv(x) op x = e; .
axiom (x op Y) op z = x op (y op z);

end;

2U: read (affum>grpl.axioms ;

(Reading AFFIRM commands from (AFFIRM)GRP1.AXIOMS.3}
type Grp1
reflexive: Grp1

. New rule:
reflexive = reflexive

·)TRUE
1/1. Affirmed.
x, y, z: Grp1
Rule simplifies to TRUE. Affirmed .

. New rule:
. eop x
·)x

1/1. Affirmed.
New rule:

inv(x) op x .
··)e

1/1 .. Affirmed.
New rule:

. (x op y) ap z
-) x 0P (y op z)

1/1.!!'!
Frpm (x op y) op z = = x op (y op z)

and. inv(x) op x = = e
we obtain a new rule:

inv(y) op (y op z)
·)z

.!
2/2.!
From inv(y) op (y op z) = = z

and inv(y) op (y op z) = = z

we obtain a new rule:
inv(inv(y)) op z

·)yopz
!.!!
From inv(y) op (y op z) = = z
and (x op y) op z = = x op (y op z)

we obtain a new rule:

.!

'inv(x op y') op (x op (y' op z»
.} z

From inv(y) op (y op z) = = z

and inv(x) op x = = e
we obtain a new rule:

zope
·)z

11

12

.!
From inv(y) op (y op z) = = z

and e op x = = x
we obtain a new rule:

inv(e) op Z

.) z
3/6 .. !.!!.!
From Z op e = = Z

and inv(x) op x = = e
we obtain a new rule:

inv(e)
.) e

417.!.!.
5/7 discarding rule

inv(e) op z = z

6/7.!.!
From inv(inv(y» op Z = = y op Z

and Z op e = = Z

we obtain a new rule:
inv(inv(y»

.) y"
. discarding rule
inv(inv(y» op Z = Y op Z

7/S.!
From inv(inv(y» = = y
and inv(y) op (y op z) = = Z

we obtain a new rule:
y op (inv(y) op z)

.) Z

.!
From inv(inv(y» = = y
and inv(x) op x = = e
we obtain a new rule:

y op inv(y)
.) e

.. !
S/1 D.!.!. .. !.!
From y op inv(y) = :: e
and (x op y) op Z :: = X op (y op z)
we obtain a new rule:

x op (y' op inv(x op y'»
.) e

!..!
. 9/11.!.!.!.!!.!..!

From y op (inv(y) op z) = = Z

and (x op y) op Z = = ~ op (y op z)

we abtain a new rule:
x ap {y' op (inv{x op y') op z»

,>z
!.I.!
10/12 .. .!!.!.!!
From x op (y' op inv(x op Y'» = = e
and yap (inv(y) op z) = = z
we obtain a new rule:

y' ap inv(inv(y} op y')
.) Y

Ll!
From x cp (y' ap inv(x op y'» = = e
and inv(y} ap (yap z) = = z
we obtain a new rule:

y' ap inv{y op y')
.) inv(y)

!.!
Fram x op (y' op inv(x ap y'» = = e
and (x op y) op Z = = x op (y op z)
we obtain a new rule:

x' PP (y op (y' op inv(x' op (yap y'»»
·)e

!!!.!. !I!
11/15 .. .1
From y' ap inv(y op y') ,,; ::: inv(y} .
. and y'op inv(y ap y'} = = inv{y)
we abtain a new rule:

inv{y ap y#3) ap y
.) inv{y#3)

!. discarding rule
x ap (y' ap inv(x ap y'» = e

.!.!
From y' ap inv{y op y') = = inv(y)
and y ap (inv(y) op z) = =. z
we obtain a new rule:

inv{y ap inv{y"»
:) y" ap inv(y)

!.!.!
From y' ap inv(y op y') = = inv{y)
and inv(y) cp (y op z) = = z
we obtain a possible new rule:

inv(y") ap inv{y) = = inv(y op y")

Ok??

one of:
Yes
Reverse it

These are the user's options when Knuth-Be.ndix asks what to do wilh a possible new nile:

Suppress it (put it,on the list "8adEquatians")

13

14

Treat it as Equation .) TRUE
Instead accept another equation from the terminal

The reversal decision was based on the structure-reducing characteristic offinite tennination

Ok? Reverse it [confirm]
!.!!!. !.!!
12/18. discarding rule
y' 01' inv{y op y') = inv(y}

.! !.!!.!!.!!.!.!.!..!.
13/18 discarding rule
inv{y op inv(y"}) = y" op inv{y)

1411"8 discarding rule
inv(y QP y # 3} op y = inv(y # 3)

15/18 discarding rule
y' op inv(inv(y) op y') = y

1 6/1 8-dis~arding rule
inv(x op y') op (x op (y' op z» = z

17/18 discarding rule
x op {yi op (inv(x op y') op z)} = z

18/18 discarding rule
x' op (y op (y' op inv(x' op (y op y'}))) = e

Affirmed.
Leaving Grp1; now editing Basis.

3U: print type Grpl;

type GrpJ;

declare reflexive, x, y, Z, y', x', y # 3, yl!: Grp1 ;

interfaces e, inv(x}, x op y: Grp1;

. inflx . op;

axiom reflexive = reflexive = = TRUE;

axioms e op x = = x,
inv(x) op x = = e,
(x op y) op Z = = x ot> (y op Z);

rulelemmas inv(e) = = e,
inv(inv(y» = = y,
inv(y op y") = = inv(y") op inv(y);

rulelemmas inv(y) op (y op z) = = z,

z ope.= = z,
y op (inv(y) op z) = = z,
y op inv(y) = = e;

end {
GrpJ} ;

4 U: quit;

Type CONTINUE to return to AFFIRM.

15

16

3. Simple Send VCs
This transcript shows a verification of very simple message-passing system. The system is

described by a Pascal-like program. It uses two abstract data types, SetOfElemType and ElemType.

The data types are pre-defined and kept in <PVLlBRARY> and used to verify the program (see page

56, Appendix I, for a listing of the type SetOfElemType). More extensive annotation and explanation

of the firSt part appear in the User's Guide.

Transcript file <RBATES>AFFIRMTRANSCRIPT.11-NOV-OO.2

is open in the AFFIRM system <AFFIRM>AFFIRM.EXE.120

1 U:
We are increasing the AverageNameLenglh and the TenninalLineWidth so this transcript
looks better Jar our printing device.

2 U: profile A yerageNameLength = 10;

AverageNameLength: 10

3 U: profile TerrninalLine \Vidth = 88;

TerminalLineWidth: 88

4 U: needs type SetOfElemType;

compiled for AFFIRM on 22-A~g-BO 14:20:53
file created for AFFIRM on 22-Aug-BO 14:20:16

SETOFELEMTYPECOMS

(File created under Affirm 111)
compiled for AFFIRM on 22-Aug·80 09:22:12
file created for AFFIRM on 22·Aug·80 09:22:00
ELEMTYPECOMS

(File created under Affirm 111)
<PVLlBRARY>ELEMTYPE.COM.2<PVLIBRARy'>SETOFELEMTYP~.COM.2

5 U: print file <pvlibrary>simplesend.program ;

<PVLlBRARY>SIMPLESEND.PROGRAM.7:

If

program Send Receive;
{

This set of three procedures simulates an overly simple message·passing system. In SimpleSend,
messages are simply "picked" out of RemainingToBeSent, "sent" to ReceivedSoFar, then deleted
from RemainingToBeSent, which decreases from TotafToBeSent down to NewSetOfElemType. After
"send" the message is either received or lost. No checks or resends are made so the strongest
property we can prove about this program is that ReceivedSoFar is a subset of TotalToBeSent.
}

{
This procedure won't be proved, just left pending.

}
procedure pick(s:SetOfElemType; var it:ElemType);
pre s- = NewSetOfElemType;
post it in s';

{
Nor will this procedure be proved, only assumed. Note that the use of 'or' gives us a kind of

non·determinism.
)
procedure send(itElemType; var rec:SetOfElemType);
pre TRUE;'
post rec = rec' add it' or rec = rec';

{
Here's the little procedure which simulates sending and receiving messages.

}
procedure SimpleSend(TotaIToBeSentSetOfElemType;

var ReceivedSoF ar:SetOfElem Type);
pre TRUE;
post ReceivedSoFar subset TotaIToBeSent';

var NextToSend:ElemTyp~;
var RemainingToBeSent : SetOfElemType;
begin

end;

RemainingToBeSent: = TotalToBeSent;
ReceivedSoFar : = NewSetOfElemType;

maintain ReceivedSoFar subset TotalToBeSent
and RemainingToBeSent subset TotalToBeSent

while RemainingToBeSent- = NewSetOfElemType do
begin

pick(RemainingToBeSent, NextToSend);
send(NextToSend, ReceivedSoFar);
RemainingToBeSent : = RemainingToBeSent rem NextToSend;

end;

18

6U:
The units pick and send are 1101 provable since we didn't supply their bodies.

7 U: readp {pYlibrary)simplesend.program ;

(Reading Pascal program units from {PVLlBRARY>SIMPLESEND.PROGRAM.7)
The program units are SendReceive, pick, send, and SimpieSend.
Type checking SendReceive ... pick ... send ... Simp! ;e',IL.

8 U: gemcs SimpleS end;

The result lemma for SimpieSend is:

assume computesSimpieSend, computes{SimpleSend(TotaIToBeSent, ReceivedSoFar),
resu It(ReceivedSoF ar1»

imp ReceivedSoFar1 subset TotalToBeSent;

There ar~ 3 verification conditions for SimpleSend:

theorem SimpleSend # 1, ReceivedSoFar2 subset TotaiToBeSent
and RemainingToBeSent1 subset TotalToBeSent
and RemainingToBeSent1 = NewSetOfElemType

imp ReceivedSoFar2 subset TotaiToBeSent;

theorem SimpieSend # 2, NewSetOfElemType subset TotalToBeSent
and TotalToBeSent subset TotalToBeSent;

theorem SimpleSend # 3, ReceivedSoFar subset TotalToBeSent

(VC1 :)

and RemainingToBeSent subset TotalToBeSent
and RemainingToBeSent - = NewSetOfElemType
and computes(pick(RemainingToBeSent, NextToSend),

result(NextToSend2»
and computes(send(NextToSend2, ReceivedSoFar),

resu It(ReceivedSoF ar3»
imp ReceivedSoFar3 subset TotalToBeSent

and (RemainingToBeSent rem NextToSend2) subset TotalToBeSent

Program SimpleSend is awaiting the proof of vcs SimpleSend # 1, SimpleSend # 2
, and StmpleSend # 3.

9 U: gemcs pick~send;

The result lemma for pick is:

assume computespick, s - = NewSetOfElemType

and computes{pick{s, it),

result{it1 »
imp it1 in s;

There is 1 verification condition for pick:

theorem pick # 1 , s - = NewSetOfElemType
imp it in s;

(VC1 :)
Program pick is awaiting the proof of ve pick # 1.

The result lemma for send is:

. assume computessend, computes{send(it, rec),

result(rec1 »
imp ree1 = ree add it

or rec1 = ree;

There is 1 verification condition for send:

theorem send # 1, ree = ree add it
or rec = ree;

(VC1 :)
Program send is awaiting the proof of ve send # 1.

10 U:
Try to prove the first verification condition/or the unit SimpleSend

11 U: try SimpJeSend # 1;

SimpleSend # 1 is untried.

TRUE
SimpleSend # 1 proved,

12 U: next;

There's more than one unproven ancestor. You may pick one of SimpleSend # 2
or SimpleSend # 3.

13U:

19

We have proved SimpleSend# 1. The system doesn't want to pick either verification condition
so we will pick number 2.

14 U: try SimpleSe,nd#2;

20

SimpleSend # 2 is untried.

all TotalToBeSent (NewSetOfElemType subset TotalToBeSent
and TotalToBeSent subset TotalToBeSent)

15 U: ~,'oke subsetlalll ;

TRUE
SimpleSend#2 proved.

1eu: next;

Going to unproven ancestor SimpleSend # 3.
SimpleSend # 3 is untried.

all ReceivedSoFar,
TotalToBeSent,
RemainingToBeSent, NextToSend, NextToSend2, ReceivedSoFar3

(ReceivedSoFar subset TotalToBeSent and RemainingToBeSent subset
TotalToBeSent

.and Remai[lingToBeSent - = NewSetOfElemType
and computes(pick(RemainingToBeSent, NextToSend),

result(NextToSe,!d2»
and computes(send(NextToSenc:j2, ReeeivedSoFar),

result(ReeeivedSoFar3»
imp ReceivedSoFar3 subset TotalToBeSent

and (RemainingToBeSent rem NextToSend2) subset TotalToBeSent)

17 U:
We are at the thi/·d verification condition. J-Ve will apply the computes lemma for pick and
send

18 U: apply computespick;

some~, it, it1
(s - = NewSetOfElemType

and computes(pick(s, it),
result(it1 »

imp it1 in s)

19 U: apply computessned;

(computessned = > computessend)

some it', rec, rec1
computes(send(it', ree), result{rec1»

imp ree1 = ree add it'
or ree1 = ree)

21

2OU: put s=RemainingToBeSent, it=NextToSend, it1=NextToSend2, it'=NextToSend2,
ree = ReeeivedSoFar, reel = ReeeivedSoFar3 ;

all ReeeivedSoFar.
TotalToBeSent.
RemainingToBeSent. NextToSend. NextToSend2. ReceivedSoFar3

(computes(send(NextToSend2. ReeeivedSoFar).
result(ReeeivedSoF ar3»

and ReeeivedSoFar3
= ReeeivedSoFar add NextToSend2

or ReceivedSoFar3 = ReeeivedSoFar
and RemainingToBeSent - = NewSetOfElemType
and computes(pick(RemainingToBeSent. NextToSend).

result(NextToSend2»
and NextToSend2 in RemainingToBeSent
and ReceivedSoFar subset TotalToBeSent
.and RemainingToBeSent subset TotalToBeSent

imp ReceivedSoFar3 subset TotalToBeSent
and RemainingToBeSent rem NextToSend2

subset TotalToBeSent)

·21 U: declare sl:SetOfElemType;

s1: SetOfElemType

22 U: apply rem Subset, s subset sl imp s rem x subset s1;

somes, s1, x
(s subset s1
imp (s rem x) subset Si)

23 U: put s= RemainingToBeSent,sl = TotalToBeSent,x = NextToSend2;

all ReceivedSoFar,
TotalToBeSent,
RemainingToBeSent, NextToSend. NextToSend2, ReceivedSoFar3

(RemainingToBeSent subset TotalToBeSent
and RemainingToBeSent rem NextToSend2

subset TotalToBeSent
and computes(send(NextToSend2, ReeeivedSoFar),

result{ReceivedSoFar3»
and ReceivedSoFar3

= ReeeivedSoFar add NextToSend2

22

or ReceivedSoFar3 = ReceivedSoFar

and RemainingToBeSent - = NewSe!OfElemType
and computes(pick(RemainingToBeSent, NextToSend),

result(NextT oSend2»
and NextToSend2 in RemainingToBeSent
and ReceivedSoFar subset TotalToBeSent

imp ReceivedSoFar3 subset TotalToBeSent}

24 U: suppose ReceivedSoFar3= RecehedSoFar add NextToSend2;

(yes:)
all ReceivedSoFar,

. TotalToBeSent,

RemainingToBeSent, NextToSend, NextToSend2, ReceivedSoFar3
(. ReceivedSoFar3

= ReceivedSoFar add NextToSend2
and RemainingToBeSent subset TotalToBeSent
and RemainingToBeSent rem NextToSend2

subset TotalToBeSent
and <;;omputes(send(NextToSend2, ReceivedSoFar),

result(ReceivedSoFar3»
and RemainingToBeSent - = NewSetOfElemType
and computes(pick(RemainingToBeSent, NextToSend),

result(NextToSend2»
and NextToSend2 in RemainingToBeSent
and ReceivedSoFar subset TotalToBeSent

imp ReceivedSoFar3 subset TotalToBeSent)

25 U: replace RecehedSoFar3;

all ReceivedSoFar,
. TotalToBeSent,
RemainingToBeSent, NextToSend, NextToSend2, ReceivedSoFar3

(ReceivedSoFar3
= ReceivedSoFar add NextToSend2

and RemainingToBeSent subset TotalToBeSent
and RemainingToBeSent rem NextToSend2

subset TotalToBeSent
and computes(send(NextToSend2, ReceivedSoFar),

result(ReceivedSoFar add NextToSend2»
and RemainingToBeSent - = NewSetOfElemType
and computes(pick(RemainingToBeSent, NextToSend),

resu It(NextT oSend 2»
and NextToSend2 in RemainingToBeSent
and ReceivedSoFar subset TotalToBeSent

imp (ReceivedSoFar add NextToSend2) subset TotalToBeSent)

26 U: apply addSubset, s subset sl and x in sl imp s add x subset sl;

somes, s1, x
(s subset s1 and x in s1
imp (s add x) subset S1)

27 U:put S = Recei\'edSo Far ,sl = TotaIToBeSent,x = NextToSend2;

all ReceivedSoFar,
TotalToBeSent,
RemainingToBeSent, NextToSend, NextToSend2, ReceivedSoFar3

(ReceivedSoFar subset TotalToBeSent
and -(NextToSend2 in TotalToBeSent)
and ReceivedSoFar3

= ReceivedSoFar add NextToSend2
and RemainingToBeSent subset TotalToBeSent
and RemainingToBeSent rem NextToSend2

subset TotalToBeSent
. and computes(send(Nexrr oSend2, ReceivedSoFar),

result(ReceivedSoFar add NextToSend2»
and RemainingToBeSent - = NewSetOfElemType
and computes(pick(RemainingToBeSent, NextToSend),

result(NextT oSend2))
and NextToSend2 in RemainingToBeSent

. imp (ReceivedSoFar add NextToSend2) subset TotalToBeSent}

28 U: apply inSubset, x in sand s subset sl imp x in sl;

some x, s, s1
(x in sand s subset s1
imp x in s1)

. 29 U: search;

1/9: s = TotalToBeSent
and x = NextToSend2

2/9: s = RemainingToBeSent
"and x = NextToSend2
·1/2: s1 = RemainingToBeSent
2/2: s1 = TotalToBeSent

Proved by chaining and narrowing
using the substitution

s = RemainingToBeSent
and x = NextToSend2
and s1 = TotalToBeSent

.24

TRUE

SOU: next;

Going to leaf no:.

all ReceivedSoFar,
TotalToBeSent,
RemainingToBeSent, NextToSend, NextToSend2, ReceivedSoFar3

(ReceivedSoFar3
- = ReceivedSoFar add NextToSend2

and RemainingToBeSent subset TotalToBeSent
and RemainingToBeSent rem NextToSend2

subset TotalToBeSent
and computes(send(NextToSend2, ReceivedSoFar),

result(ReceivedSoFar3»
and ReceivedSoFar3 = ReceivedSoFar
and RemainingToBeSent - = NewSetOfElemType
and computes(pick(RemainingToBeSent, NextToSend),

. result(NextToSend2»
and NextToSend2 in RemainingToBeSent
and ReceivedSoFar subset TotalToBeSent

imp ReceivedSoFar3 subset TotalToBeSent)

31 U: .
This is the case where not(ReceivedSoFar3= ReceivedSoFaradd NextToSend2}.

32 U: replace ReceiYedSoFar3;

SimpleSend #3 is awaiting the proof of lemmas remSubset, addSubset, and inSubset.

TRUE

33 U: print proof;

theoretn SimpleSend # 3, ReceivedSoFar subset TotalToBeSent

. ,

and RemainingToBeSent subset TotalToBeSent
and RemainingToBeSent - = NewSetOfElemType
and computes(pick(RemainingToBeSent, NextToSend),

resu It(NextT oSend2»
and computes(send(NextToSend2, ReceivedSoFar),

resu It(ReceivedSoF ar3»
imp ReceivedSoFar3 subset TotalToBeSent

and (RemainingToBeSent rem NextToSend2) subset TotalToBeSent

SimpleSend # 3 uses computespick%, computessend%, remSubset?, addSubset?, and inSubset?

proof tree:
18:1 SimpleSend#3

apply eomputespick
19: 13 apply computessend
20: 14 put s=RemainingToBeSent

and it = NextT oSend
and it1 = NextToSend2
and it' = NextToSend2
and ree = ReceivedSoFar
and ree1 = ReceivedSoFar3

22: 15 apply remSubset
23: 17 put s= RemainingToBeSent

and s1 = TotalToBeSent
and x = NextT oSend2

24: 18 suppose ReeeivedSoFar3
= ReceivedSoFar add NextToSend2

25: yes:
19 replace ReceivedSoFar3

26: 21 apply addSubset
27: 23 put s = ReceivedSoFar

and s1 = TotalToBeSent
and x = NextT oSend2

-28: 24· apply inSubset
29: 26 put s = RemainingToBeSent

and x = NextToSend2
and s1 = TotalToBeSent _{search}

29: (proven!)
32: no:{SimpleSend # 3}

20 replace ReceivedSoFar3
.) (proven!)

34U:

25

We havefinished offSimpleSend# 3 and have only the 3 lemmas to prove. The next command
will pick one oj the lemmas.

35 U: next;

Going to lemma remSubset.
re:nSubset is untried.

all s, s1, x
(s subset s1
imp (s rem x) subset s1)

36 U: invoke subset\alll ;

all s. s 1, x, x" (sol'T!e x'

26

x' in s imp x' in s1
and x" in (s rem x)

imp x" in s1»

37 U: put X'=x";

all 5, s1 , x, x"
-(x" in s)

and x"
in srem x

imp x" in s1)

38 U: apply remEq,·, i in (s rem x) eqv i in sand j..., =x;

Please declare i (then type ok; to continue).

39 (1) U:
We have forgotten to declare ~ so the system asks us to declare it.

40 (1) U: declare i:ElemType;

i: ElemType

41 (1). U: ok ;

some i. 5'. x'
-(i in (5' rem x'»

eqv i in S' imp i :: x')

42 U: search;

1/4: s' = s
and i = x"

1/1: x' = x
Proved by chaining and narrowing
using the substitution

S' = ·s
and i = x"
and x' = x

TRUE
remSubset is awaiting the proof of lemma remEqv.

43 U: print proof;

theorem remSubset, S subset s1
imp (s rem x) subset s1 ;

remSubset uses remEqv?

proof tree:
36:1 remSubset

invoke subset I all 1
37: 28 put x' = x"
41: 29 apply remEqv

42: 31 put s' = s
and i = x"
and x' = x {search}

·42:-) (proven!)

44U:
We have to prove the lemma remEqv.

45 U.: next;

Going to lemma remEqv.
remEqv is untried.

all i, S, x
~ -(i in (s rem x»
eqv i in simp i = x)

46 U: employ Induction(s);

Case NewSetOfElemType: Prop(NewSetOfElemType) proven.
Case add: all SS, ii (IH(ss)

imp Prop(ss add ii» remains to be shown.
(add:)
allss', ii', i,x

IH(ss', 30 {remEqv})
impifi=ii'

then - i
in if ii' = x

then ss' rem x
else (ss' rem x) add ii'

eqv i = x
else - i

in if ii' =x
then ss' rem x
else (ss' rem x) add ii'

eqv i in ss'

impi=x) .
(The 'cases' comman.d is applicable)

27

-------------~---.--.--- -----------.. _------------------

28

47 U:
We could have turned on Au[oCases so we wouldn't have to explictly do the cases command

48 U: cases;

all 55', ii', i, x
IH(ss', 30 {remEqv})

imp ifi=ii'
then ii' = x

and -(i in (ss' rem x»
eqvi =x

else -(i in (ss' rem x»
eqv i in ss'

imp i = x)

49 u: invoke IH;

all 55', ii', i, x (some i', x'
{if i" in 55' imp i; = x'

then i' in (55' rem x')
or if i = ii'

then ii' = x
and -{i in (55' rem x))

eqv i = x
else -(i in (S5' rem x))

eqv i in 55'
impi=x

else i' in (ss' rem x')
imp if i=ii'

then ii' = x
and -(i in (ss' 'em x))

.eqv i = x
el5e -{i in (S8' rem x))

eqv i in S5'

50 u: search;

, /4: i' = i
1/2: x' = ii'
2/2: x' = x

2/4: x' = ii'
and i' = i

3/4: x' = x

imp i =x))

and i' = i
4/4: x' = x

andi' = ii'
Unsuccessful.

51 U:

29

search couldn't reduce the expression to true. So we can either use the 12l!!. command or the
choose command Let's use choose.

52 U: choose 1,2 ;

114: i' = i
2/2: x' = x

allss', ii', i, x
(if i in ss'

then i = x
and - i

in ss'·rem x
and i = ii'

imp ii' = x
else - i

in ss' rem x
and i = ii'

imp ii' = x
eqv i = x)

53 U: replace i;

remEqv proved.
remSubset proved.

TRUE

54 U: print status;

~he untried theorems are addSubset, inSubset, pick# 1, and send # 1.
No theorems are tried.
The assumed theorems are computespick, computessend, and computesSimpleSend.
The awaiting lemma proof theorems are pick, send, SimpleSend, and SimpleSend # 3.
The proved theorems are remEqv, remSubset, SimpleSend # 1, and SimpleSend # 2.

55 U: print proof;

theorem remEqv, i in (s rem x)
eqv i in s

and i ... = x;

30

proof tree:
46:! remEqv

employ Induction(s}
-) NewSetOfElemType:

Immediate
48: . add:

33 cases
49: 34 invoke IH
52: 35 put i' = i

and x' = x {choose)
53: 36 replace i
-) (proven!)

56U: next;

There's more than one unproven ancestor. You may pick one of addSubset or inSubset.

57U:
We still have 2 more lemmas to prove before our proofofSimpleSend# 3 will be completed.

58 U: try addSubset;

addSubset is untried.

ails, 51, x
(5 subset s1 and x in s1

imp (s add x) subset s1)

59 U: im'oke subsetlalll ;

aU S, s1, x, x" (some x'
x' in s imp x' in s1

and x in s1
and (x" = x) or x" in s

imp x" in s1»)

60U: put X'=x";

all s, s1·, x, x"
-(x" in s)

and x in s1
and x" = x

imp x" in s1)

61 U: replace x;

addSubset proved.

TRUE

62 U: print proof;

theorem addSubset, ssubset s1
'and x in s1

imp (s add x) subset s1 ;

proof tree:

59:! addSubset

invoke subset I all I
, 60: 37 put x' = x"
61: 38 replace x
.} (proven!)

63U: next;

Going to unproven ancestor inSubset.
inSubset is untried.

a,lI x, s, s1
(x in sand s subset s1
imp x in s1)

64LJ:
The last lemma/or SimpleSend# 3.

65 U: invoke subset;

all x, s, s1 (some x'
(x in s

and x' in s imp x' in s1

imp x in s1»

66 U: search;

1/1: x' = x
, Proved by chaining and narrowing

using the substitution

x' = x

TRUE

inSubset proved.

31

32

SimpleSend # 3 proved"
Program SimpleSend verified!

67U:
That's it, we have proved the unit SimpleSend

68 U: print proof;

theorem inSubset, x in s
and s subset s1

impx in s1;

proof tree:
65:! inSubset

invoke subset
66: 39 put x' = x {search}
66:-} (proven!).

69U:
This print command will print any theorems that we have proven in this session.

70 U: print proof theorems;

theorem inSubset. x in s
and s subset s1

impx in s1;

proof tree:
65:! inSubset

·invoke subset
66: 39 put x· = x {search}
66:-} (proven!)

theore"m addSubset, s subset s1
and x in s1

imp (s add x) subset s1 ;

proof tree:
59:! addSubsel

invoke subset I all I
60: 37 put x' = x"

. 61: 38 replace x
(proven!)

theorem remEqv, i in (s rem x)
eqv i ins

and i -= x;

proof tree:
46:! remEqv

employ Induction(s)
NewSetOfElemType:

Immediate
48: add:

33 cases
49: 34 invoke IH
52: 35 put i' = i

and x' = x {choose}
53: 36 replace i

(proven!)

theorem remSubset, s subset s1
imp (s rem xi subset ~';

. remSubset uses remEqv!.

proof tree:
36:! remSubset

invoke subset I all I
37: 28 put x' = x"
41: 29 apply remEqv
42: 31 put s' = s

and i = x"
and x' = x {se;arch}

42: (proven!).

theorem SimpleSend # 3, ReceivedSoFar subset TotalToBeSent
and RemainingToBeSent subset TotalToBeSent
and RemainingToBeSent - = NewSetOfElemType
and computes(pick(RemainingToBeSent, NextToSend),

result(NextT oSend2})
and computes(send(NextToSend2, ReceivedSoFar),

result(ReceivedSoFar3»
imp ReceivedSoFar3 subset TotalToBeSent

an.d (RemainingToBeSent rem NextToSend2) subset TotalToBeSent

34

SimpleSend # 3 uses computespick%, cOl1]putessend%, remSubset!, addSubsetl, and inSubsetL

. proof tree:
18:! SimpleSend#3

apply computespick
19: 13 apply computessend
20: 14 put s=RemainingToBeSent

and it = NextToSend
and it1 = NextToSend2
and it' = NextToSend2
and rec = ReeeivedSoFdr
and ree' = ReceivedSoFar3

22: . 15 apply remSubset
23: .17 put s = RemainingToBeSent

and s1 = TotalToBeSent
and x = NextToSend2

24: '8 suppose ReceivedSoFar3
= ReceivedSoFar add NextToSend2

25:ye~:

19 replace ReceivedSoFar3
26: 21 apply addSubset
27:23 put s = ReceivedSoFar

and s1 = TotalToBeSent
and x = NextToSend2

28: 24 apply inSubset
29: 26 put s = RemainingToBeSent

and x = NextToSend2
and s1 = TotalToBeSent {search}

29: (proven!)
32: no:{SimpleSend # 3}

20 replace ReceivedSoFar3
(proven!)

theorem SimpleSend # 2, NewSetOfElemType subset TotalToBeSent
and TotalToBeSent subset TotalToBeSent;

proof tree:
, 5:! SimpleSend # 2

invoke subset I all I
15: (proven!)

theorem SimpleSend # 1, . ReceivedSoFar2 subset TotalToBeSent

proof tree:

and RemainingToBeSent1 subset TotalToBeSent
and RemainingToBeS.ent1 = NewSetOfElemType

imp ReceivedSoFar2 subset TotalToBeSent;

11 :! (proven!)

theorem coml-'uL~ ~SimpleSend, computes(SimpleSend(TotalToBeSent, ReceivedSoFar},
result(ReceivedSoFar1 »

imp ReceivedSoFar1 subset TotalToBeSent;

theorem SimpleSend, verification(SimpleSend);
SimpleSend uses SimpleSend # 1!, SimpleSend # 2!, SimpleSend # 3!, and computesSimpleSend%.

proof tree:
8:! SimpleSend

11:! VC1:
Immediate

15:! VC2:
SimpleSend # 2

invoke subset I a\l I
15: (proven!)
18:! VC3:

SimpleSend#3
apply computespick

19: 13 apply computessend
20: 14 put s = RemainingToBeSent

and it = NextToSend
and it1 = NextToSend2
and it' = NextToSend2
and ree = ReceivedSoFar
and rec1 = ReceivedSoFar3

22: 15 apply remSubset
23: 17 put s = RemainingToBeSent

and s1 = TotalToBeSent
and x = NextToSend2

. 24: 18 suppose ReceivedSoFar3
= ReceivedSoFar add NextToSend2

25: yes:
19 replace ReceivedSoFar3

26: 21 apply ~ddSubset
27: 23 put s = ReceivedSoFar

35

36

and s1 = TotalToBeSent
and x = NextToSend2

28: 24 apply inSubset
29: 26 put s = RemainingToBeSent

and x = NextToSend2
and s1 = TotalToBeSent {search}

29: (proven!)
32: no:{SimpleSend, VC3:}

20 replace ReceivedSoFar3
(proven!)

% eomputes:{SimpIBSend}
computesSimpleSend

theorem computespick, s - = NewSetOfElemType
and computes(pick(s, it),

result(it1 »
imp it' in s;

theorem pick# 1, s - = NewSetOfElemType
imp it in s;

theorem pick, verification(pick);
pick uses pick# 1? and computespick%.

proof tree:
9:1 pick
? VC1:

pick#1

% computes:
computespiek

theorem eomputessend, computes(send(it, ree),
result(rec1 »

imp ree' = ree add it

or ree' = ree;

theorem send # 1, ree = ree add it
or ree=ree;

theorem send, verifieation{send);
send uses send # 1? and computessend%.

proof tree:
9:1 send
? VC1:

send # 1

% computes:
. computessend

71 U: print status SimpleSend;

SimpleSend is proved.

72U: quit;

Type CONTINUE to return to AFFIRM.

37

38

4. Proof of Rotate Twice
This property of the Rotate family is considerably more difficult to prove than many others, due to a

tricky subsidiary deduction. This transcript is also suppos~d to illustrate a realistic proof attempt,

instead of a polished proof. The transcript shows the proof of one branch of the proof, including

many false starts. Notice the use of the profile entries. Unlike the other proofs in this volume, Rotate

Twice shows a number of profile entries (including automechanisms such as AutoNext) turned on.

Transcript file <GERHART>AFFIRMTRANSCRIPT.8·NOV·80.2
is open in the AFFIRM system (AFFIRM)AFFIRM.EXE.120

1 U:
In this transcript, we will be proving a difficult property of a Rotate operation on sequences.
The basis data t)'pe for sequences doesll't malter, so we will use a readily available one, for
Integer.

2 U: needs type sequenceofinteger;

compiled for AFFIRM on 7·Nov·80 12:03:27
file created for AFFIRM on 7·Nov·80 12:03:18
SEQUENCEOFINTEGERCOMS
(GERHART>SEQUENCEOFINTEGER.COM.1

3U:
the needs command found the type in 111)' directory (i201711ally it would be retrieved from
('PVLIBRARY»). Here it is:

4 U: print type sequenceofiS;

(sequenceofi$ =) SequenceOfinteger)
The $(Escape) denotes the rest of the type name.

type SequellceOjll21egel~

declare dummy, 5S, 5, s1, s2: SequenceOflnteger;

declare k, ii, i, i1, i2, j: Integer;

interfaces NewSequenceOflnteger. s apr i, i apl s, seq(i), s1 join 52,
LessFir5t(s), LessLast(s): SequenceOflnteger;

infIx join, api, apr;

interfaces isNew(s), Firstlnduction(s), Induction(s), NormaIForm(s),
i ins: Boolean;

infIX in;·

interfaces Length(s), First(s}, Last(s): Integer;

axioms dummy = dummy = = TRUE,
NewSequenceOflnteger = s apr i = = FALSE,
s apr i = NewSequenceOflnteger = = FALSE,
sapri = s1 apri1 = = «s=s1)and (i=i1»;

axioms i apl NewSequenceOfinteger = = NewSequenceOflnteger apr i,
i apl (s apr i1) = = (i apl s) apr i1;

axiom seq(i) = = NewSequenceOflnteger apr i;

axioms NewSequenceOflnteger join s = = s,
(s apr i) join s1 = = s join (i apl s1);

axiom LessFirst(s.apr i)
= = if s = NewSequenceOflnteger

then NewSequenceOfinteger
eise LessFirst(s) apr i;

axiom LessLast(s apr i) = = s;

axiom isNew(s) = = (s = NewSequenceOflnteger);

axioms i in NewSequenceOflnteger = = FALSE,
iin(sapri1} = = (iinsor{i=i1)};

axioms Length(NewSequenceOfinteger) = = 0,
Length{s apr i) = = Length(s} + 1;

axiom First(s apr i} = = if s = NewSequenceOflnteger
then i
else First(s);

axiom Last(s apr i) = = i;

rulelemmas NewSequenceOfinteger = i apl s = = FALSE,

39

-,---:---~---------. ----

40

i apl s = NewSequenceOflnteg"er = = FALSE;

rulelemmas s join (s1 apr i) = = (s join s1) apr i,
s join NewSequenceOflnteger = = s,
(i apl s1) join s2 = = i apl (s1 join s2),
(s join (i apl s 1» join s2

= = s join (i apl (s1 join s2)),
s join (s1 join s2) = = (s join s1) join s2;

rule lemma LessFirst{i apl s) = = s;

rulelemma LessLast(i apl s)
= = if s = NewSequenceOflnteger

then NewSequenceOflnteger
else i apl LessLast(s);

rulelemma i in (i1 apl s) = = {i in s or (i = i1));

rulelemma First(i apl s) = = i;

rulelemma Last(i apl s) = = if s = NewSequenceOflnteger
then i
else Last(s);

scbemas Firstlnduction(s)
= = cases(Prop(NewSequenceOflnteger), all ss, ii

(IH(ss)
imp Prop(ii apl ss))),

Induction(s)
= = cases(Prop(NewSequenceOflnteger), all ss, ii

(. IH(ss)
imp Prop(ss apr ii))),

NormalForm(s)

= = cases(Prop(NewSequenceOflnteger), all ss, ii (Prop(ss
apr ii»);

end {SequenceOf!l1teger} ;

5 U:
Since this is a demo transcript, somenbody may be interested in the profile.

6 U: profile;

Do you want to Modify, See, or Read your profile? see [confirm]

your terminal characteristics:
TerminalLineWidth is 92

the printout modes:
LessOutputDesired is On
AverageNameLength is 5
AxiomGrouping is On
LemmaGrouping is On
InterfaceGrouping is On
DefineGrouping is On
NeedsGrouping is On
NewPP isOn
SchemaGrouping is On
UseORinProps is On
DummyVarName is dummy
ErrorTokensOutput is 15
ReportFlag is Off
RuleLHSPercentage is 49
ShowNormint is Off
ShowRuleSimplification is On
ShowRules is Off
Typeslnlnterfaces is Variables

the event history flags:
HistoryWindowSize is 6

the executive flags:
TextEditor is XED
Timer is Off
CompileOption is Redefine
UsingTed is Off

the information about files:
FreezeFileName is Frozen-AFFIRM
LoadNeededTypes is On

the spelling correction flags:
DontAskJustTake is 40

the theorem prov~r flags:

41

42

AutoResume is Off
ListAppliedExprs is On
AutoCases is On

the Interlisp mode flags:
GarbageColiectionMessage is Off
GarbageColiectionPages is 40
BreakAccess is Off

the transcript infurmation:
. AnnotatingTranscript is On

TranscriptFileName is AFFIRMTRANSCRIPT .

the profile information:
SaveOnlyChangedEntries is On
UserProfileFileName is --AFFIRMUserProfile-­
Enquir~AfterFreeze is Off
Enquirelnitialiy is Off
ReadAnotherProfileFile is On

the Knuth·Bendix flags:
Cal:ltiousCompletion is Off
KBAxiomOrder is Inverse

the automatically-applied event flags:
AutoAnnotate is On
AutoCompile is Off
AutoFix is Off
AutoF reeze is Ask
AutoGenvcs is Ask
Autolnfix is Off
AutolnvokelH is Off
AutoNext is On
AutoNormint is On
AutoPrintProof is Ask
AutoPrintProofTheorems is Ask
AutoReplace is Off
AutoSave is Off
AutoSearch is Off
AutoSufficient is Off
AutoUndo is Off

NOW do you want to modify the current profile? no [confirm]

Do you wish to save this profile? no [cpnfirm]

7 U:
Actually, I do want to modify lhe lenninalline width to display better. The easy way is:

8 U: profile terminalline$ = $ = = 88;

n = II?

TerminalLineWidth: 88
= EVALQT

. Unexpected PROFILEENTRYNAME found in routine NIL.
(undefined routine!)
Parameters: (none)

EVALQT can't be set to 88.
New value:
(... profile aborted: effects undone)

9U:
Well, that brought up AFFIRM's breakfasL I typed a bad character. Trying again.

10 U: profile terminallinewidth = 88;

TerminalLineWidth: 88

11 U:
Now I need an environment

12 U: adopt sequenceormte$;

(sequenceofinte$ = > SequenceOflnteger)
New environment:
dummy, SS, s, s1 , s2: SequenceOflnteger
k, ii, i, i1, i2, j: Integer

13 U:
The concept ofinterest is sequence rotation, both ways.

14 U: define Rotate{s,i)= =ifisNew{s) or i=O then s

(... command input aborted)

15 U: define Rotate{s,i) = = if isNew{s) then s else if i= 0 then s else if i<O then
Rotate(LessFirst(s) apr First{s), i + 1) else Rotate(Last{s) apl LessLast(s), i-I);

43

44

Please provide an interface declaration for Rotate (then type ok; to continue).

16 (1) U: interface Rotate(s,i):SequenceOfInteger;

17 (1) U: ok;

define Rotate{s, i}

1au:

1eu:

= = if (s = NewSequenceOflnteger) or (i = 0)
then s
else if i<D

then Rotate(LessFirst(s) apr First(s}, i + 1}
else Rotate(Last{s) apl LessLast(s), i-1};

N ole the change in fonn, adding an 'or' for the first two conditionals.

The property ofinterest is:

20 U: try RTwice, Rotate{Rotate(s,i)j) = Rotate(s,i + j);

Making node RTwice a theorem .
. RTwice is untried.

all s, i, j (Rotate{Rotate{s, i), j) = Rotate{s, i + j))

21 U:
The usual approach is to dive into an induction on one of the integer parameters. Let's try i.

22 U: employ Induction{i)~

Case 0: Prop(D) remains to be shown.
Case I?IFFERENCE: all ii «ii < = O) and IH{ii) imp Prop(ii·'» remains to be shown.
Case PLUS: all ii {(D < = ii) and IH(ii} imp Prop(ii + 1» remains to be shown.
(D:)
all s, i {Rotate{Rotate(s, D}, j) = Rotate(s, j))

23 U: inyoke ~otateI21;

TRUE
Going to leaf DIFFERENCE:.

allii',s,i

((ii' <= O) and IH(ii', 1 {RTwice)
imp Rotate(Rotate(s, ii'·1), j)

= Rotate(s, ii' + j • 1»

24 U: in-mke Rotatel21;

all ii', s, j
((ii' < = 0) and IH(ii', 1 {RTwice)
imp if s = NewSequenceOfinteger

then Rotate(s, j) = Rotate(s, ii' + j . 1)
else Rotate(Rotate(LessFirst(s) apr First(s}, jj'}, j)

= Rotate(s, ii' + j • 1})

25 U: invoke RotateI2,31;

all ii', S,j

((ii' < = 0) and IH(ii', 1 {RTwice)
imp if s = NewSequenceOflnteger

. then Rotate(s, j) = s

26U:

else }f Rotate(LessFirst(s) apr First(s), ii') = NewSequenceOfinteger
or j =0

then Rotate(LessFirst(s) apr First(s), ii')
= Rotate(s, ii' + j • 1,)

else if j<O
then Rotate(LessFirst(Rotate(LessFirst(s) apr First(s)

ii'»
apr First(Rotate(LessFirst(s) apr First(s),

. ii'»,
j + 1)

= Rotate(s, ii' + j • 1)
else Rotate(. Last(Rotate(LessFirst(s) apr First(s),

ii'»
apl LessLast(Rotate(LessFirst(s) apr First(s)

ii')),
j·1)

= Rotate(s, ii' + j . 1»

Did that wrong, wanted 1,2 Rotates.

27 U: undo;

invoke undone.

45

46

28 U: imoke Rotatell,21;

all ii',s,j
{ (ii' < = 0) and IH{ii', 1 {RTwice})
imp s = NewSequenceOflnteger

or Rotate{Rotate(LessFirst(s) apr First(s), ii'), j)
= Rotate(s, ii' + j • 1)}

29U:
Time to use the il2duction.

30 U: im'oke IH;

all ii', s, j (some s', j'
(ii' <= 0

and Rotate(Rotate(s', ii'), j'} = Rotate(s', ii' + j')
imp" s = NewSequenceOfinteger

or Rotate(Rotate(LessFirst(s) apr First(s), ii'), j)
= Rotate(s, ii' + j • 1»)

31 U: put s'=LessFirst(s) apr First(s) andf=j;

all ii', s, j "

"ii'<= 0
and Rotate(Rotate(LessFirst(s) apr First(s}, ii'),

j}
= Rotate(LessFirst(s) apr First(s), ii' + j)

imp s = NewSequenceOflnteger
or Rotate(Rotate(LessFirst(s) apr First(s}, ii'),

j)
= Rotate(s, ii' + j . 1)}

32 U: replace;

all ii', s, j

"ii' <= 0
and Rotate(Rotate(LessFirst(s) apr First(s), ii'),

j}

= Rotate(LessFirst(s) apr First(s), ii' + j)
imp s = NewSequenceOflnteger

or Rotate(LessFirst(s} apr First(s}, ii' + j)
= Rotate(s, ii' + j . 1)}

33U:

Nol'.' it's down to making the last Rotates match

34 U: invoke Rotatel-ll;

all ii', s, j
ii' (='0

and Rotate(Rotate(LessFirst(s) apr First(s), ii'),
j)

= Rotate(LessFirst(s) apr First(s), ii' + j)
imp s = NewSequenceOflnteger

or if ii' + i - 1 = 0

3PU:

then Rotate(LessFirst(s) apr First(s),

ii' + j)
= s

else ii' + j < = 0
or Rotate(LessFirst(s) apr First(s),

ii' + j)
= Rotate(Last(s) apl LessLast(s),

ii' + j - 2»

47

Let's delete the used equality_ This is not recommended style. but we have never implemented
the conesponding non-editor command

36U: @;

tty:
1"'52 (delete 3)
ok
Please summarize what you did, end with ';'

deleted hypotheses;

all ii', s,i
ii'<= 0

imp s = NewSequenceOflnteger

or if ii' + j -, = 0
then Rotate(LessFirst(s) apr First(s),

ii' + j)

= s
else ii' + j < = 0

or Rotate(LessFirst(s) apr First(s),

ii' + j)
= Rotate(Last(s) apl LessLast(s),

ii' + j - 2)}

37 U: suppose isNew(s);

48

{yes:}
TRUE
Going to leaf no:.

all ii',s,i
{ (s - = NewSequenceOflnteger) and (ii' < = 0)
imp if ii' + j ., = 0

38U:

then Rotate(LessFirst{s) apr First(s},
ii' + j)

= s
else ii' + i < = 0

. or Rotate{LessFirst{s) apr First(s),
ii' + j)

= Rotate(Last(s) apl LessLast(s),
ii' + j ·2})

I walll [0 break up the cases and re-arrange the expression.

39 U: split;

(first:)

all ii',s,i
.(. (s - = NewSequenceOflnteger) and (ii' < = 0)

and ii' + i - 1 = 0
imp Rotate(LessFirst(s) apr First(s), ii' + j)

= s)

40U:
A rearrangement of the Integer expression is needed This requires explicitly applying an
"Integer Fact" lemma, as Affiml 's Integer Simplifier doesn't handle this case.

4' U: apply AddSwitch~ i+"j=k eq" (i=k-j andj=k-i);

some i: k, j' (i + j' = k
eqv (i = k·j') and G' = k-i»

42 u: put i=ii' +j and j'=-1 and k=O;

all ii', s,i
ii' + j = ,

and -, = -(ii' + j)

and ii' + j - 1 = 0
and s - = NewSequenceOflnteger

and ii'<= 0
imp Rotate(LessFirst(s) apr Rrst{s), ii' + j)

= s)

43 U: replace;

all ii', s, j
(ii' + j = 1) and (s - = NewSequenceOflnteger)

and ii'<= 0
imp Rotate{LessFirst(s) apr First(s), 1) = s)

44 U: im'oke Rotate;

all ii',s,j
(ii' + j = 1) and (s - = NewSequenceOflnteger)

and ii' <= 0
imp Rotate{First{s) apl LessFirst(s), 0) = s)

45 u:·invoke Rotate;

all ii', S,i
((ii' + j = 1) and (s - = NewSequenceOflnteger)

and ii' <= 0
imp First(s) apl LessFirst(s) = s)

46U:
And that's a nonnalfonn properly.

47 U: employ NormaIForm(s);

Case NewSequenceOfinteger: Prop(NewSequenceOflnteger) proven.
Case apr: all ss,·jj (Prop(ss apr ii» remains to be shown.
(apr:)
all ss', jj', ii,j

((ii + j = 1) and (ii < = 0)
imp (ss' = NewSequenceOflnteger) or (First(ss') apl LessFirst(ss') = ss'»

48U:
'Whoops, it requires Induction, so it should be a lemma.

49 U: undo;

employ undone.

50

50 U: apply FirstSplit, -isNew(s) imp First(s) apl LessFirst(s)=s;

some s' «s' = NewSequenceOflnteger) or (First(s') apl LessFirst{s') = S'»

51 U: search;

1/1: s' = s
Proved by chaining and narrowing
using the substitution

s' = s

. TRUE'
Going to leaf second:.

all ii', s, j
((s - = NewSequenceOfinteger) and (ii' < = 0)
imp' W + j - 1 = 0

or ii' + j <= 0
or Rotate{LessFirst{s) apr First{s), ii' + j)
= Rotate{Last{s) apl LessLast{s),

ii' + j - 2»

52U:
The integer tenns show that ii'+ i>~2 in the Rotate equalitJ; which will allow invoking it
through to match. Firs~ let's draw out the fact.

53 U: suppose if + j> = 2;

(yes:)
all ii', S, j
{ (2 < = ii' + j) and (s - = NewSequenceOflnteger)

and ii' <= 0
imp ii' + j - 1 = 0

or Rotate(LessFirst(s) apr First{s), ii' + j)
= Rotate(Last(s) apl LessLast(s),

ii' + j - 2»

. 54 U: iriyoke Rotate;

all ii', s, j
{ (2 < = ii' + j) and (s - = NewSequenceOflnteger)

and ii' <= 0
imp ii' + j -, = 0

or Rotate{First(s) apl LessFirst(s),

ii' + j • ')
= Rotate(Last(s) apl LessLast(~),

ii' + j . 2)}

55 U: invoke Rotate;

all ii', s, j
(2 < = ii' + j) and (s - = NewSequenceOflnteger)

andii'{= 0
imp ii' + j . 1 = 0

or if LessFirst(s) = hlewSequenceOflnteger

56U:

then Rotate(NewSequenceOflnteger apr First(s),
ii' + j . 2)

= Rotate(Last(s) apl LessLast(s),
ii' + j . 2)

else Rotate(Last(LessFirst(s»
apl First(s) apl LessLast(LessFirst(s)),

. ii' + j • 2)

= Rotate(Last{s) apl LessLast(s),
ii' + j . 2»

All these selections should simplify with NormalFonn.

57 U: employ NormalForm(s);

Case NewSequenceOflnteger: Prop(NewSequenceOflnteger) proven.
Case apr: all ss, ii (Prop{ss apr ii» remains to be shown.
(apr:)

allss', ii', ii, j
({2 (= ii + j) and (ii < = 0)

imp ii + j . 1 = 0
or if sst = NewSequenceOflnteger

then Rotate(NewSequenceOflnteger apr ii',
ii + j . 2)

= Rotate(ii' apl ss', ii + j . 2)

else Rotate(ii' apl (First(ss') apl LessFirst(ss'»,
ii + j ·2)

= Rotate(ii' apl ss·, ii + j . 2»

58 U: replace;

allss', ii', ii, j
(2 < = ii + j) and (ii < = 0)

imp (ii + j • 1 = 0) or (ss' = NewSequenceOflnteger)
or Rotate(ii' apl (First(ss') apl LessFirst(ss'»,

51

52

ii + j - 2)
= Rotate{ii' apl SS', ii + j - 2»

59 U: apply FirstSplit;

some s «s = NewSequenceOflnteger) or {First(s} apl LessFirst(s} = s})

6OU: put 5=S5';

allss', ii', ii,i
(Ss' - = NewSequenceOflnteger

and First(ss') apl LessFirst{ss'} = ss'
and2<= ii + j
and ii <= 0

imp ii + i -1 = 0
or Rotate(ii' apl {First{ss'} apl LessFirst(ss'}),

ii + j - 2)

= Rotate{ii' apl ss', ii + i - 2»
61 U: replace;_

TRUE
Going to leaf no:.

all ii', s, j
{ {ii' + j < 2} and (s - = NewSequenceOflnteger)

and ii' <= a
imp . ii' + j -, = a

or ii' + j < = 0
or Rotate(LessFirst{s} apr First(s), ii' + j)

= Rotate(Last(s) apl LessLast(s),
ii' + j - 2»

62 u:.apply AddSwitch;

some i, k, j' (i + j' = k

eqv (i = k-j') and G' = k-i»

63U: put i=ii'+j and f=-l and k=O;

allii\ s,i
{if ii' + j = ,

then -, - = -(ii' + j)
and ii' + j -, - = 0

and ii' + j < 2
and s - = NewSequenceOflnteger
and ii' <= 0

imp Rotate(LessFirst(s) apr First(s),
ii' + j)

= Rotate(Last(s) apl LessLast(s),
ii' + j - 2)

else ii' + j - 1 - = 0
and ii' + j < 2
and s - = NewSequenceOflnteger
and ii' <= 0

imp ii' + j<= 0
or Rotate(LessFirst(s) apr First(s),

ii' + j)
= Rotate(Last(s) apl LessLast(s),

ii' + j - 2)}

64 U: replace;

TRUE
Going to leaf PLUS:.

all ii', s, i
{ (0 < = ii') and IH{ii', 1 {RTwice})
. imp Rotate(Rotate(s, ii' + 1),1)

= Rotate(s, ii' + i + 1}}

65 U:
Now we have to do the same thing on this side.

66 U: print proof;

theorem RTwice, Rotate(Rotate(s, i), j) = Rotate(s, i + j);
RTwice uses FirstSplit? and AddSwitch?

p.roof tree:
22:\ RTwice

employ Induction(i)
23: 0: 2 invoke Rotate \ 2 \
23: (proven!)
24: DIFFERENCE:

3 invoke Rotate \ 2 \
24: 6 cases
28: 7 invoke Rotate \ 1 , 2 \
30: 8 invoke IH
31: 9 put (s' = LessFirst(s) apr First{s» and (i' = j)
32: 10 repla.ce

53

54

34: 11 invoke Rotate I . 1 I
34: 12 cases
36: 13 @ {deleted hypotheses}
37: 14 suppose isNew(s)
37: yes:

Immediate
39: no:16 split
41: first:'

17 apply AddSwitch
42: 20 put i = ii' + j

and 0' = -1) and (k = 0)
43: 21 replace
4"4: 22 invoke Rotate
45: ' 23 invoke Rotate
50: 24 apply FirstSplit
'51: 26 put s' = s {search}
51: (proven!)
53: second:{RTwice, DIFFERENCE:, no:}

18 suppose ii' + j)= 2
54: yes:

28 invoke Rotate
55: 30 invoke Rotate
55: 31 cases
57: 32 employ NormaIForm(s)

NewSequenceOflnteger:
Immediate

57: apr:
33 cases

58: 34 replace
59: 35 apply IFirstSplit
60: 36 put s = ss'
61: 37 replace

(proven!)
62: no:{RTwice, DIFFERENCE:, no:, second:}

29 apply AddSwitch
63: 38 put i = ii' + j

and(j' = ·1)and(k=0)
64: 39 replace

(proven!)
1·) PLUS:{RTwice}

4

theorem FirstSplit, -isNew(s) imp First(s) apl LessFirst(s) = s;

theorem AddSwitch, i + j = k
eqv (i = k-j) anq G = k·i);

67 U: assume Addswitch;

(Addswitch =) AddSwitch)

68 U: try frrstsplit;

(firstsplit = > FirstSplit)
FirstSplit is untried.

all s «s = NewSequenceOfinteger) or (First(s) apl LessFirst(s} = s»

. 69 U: employ Induction(s);

Case NewSequenceOflnteger: Prop{NewSequenceOflnteger) proven.
Case apr: all ss, ii (IH(ss) imp Prop{ss apr ii» remains to be shown ..
(apr:)
all 55', ii' { IH(ss', 25 {FirstSplit})

imp (ss' = NewSequenceOflnteger) or (First(ss') apl LessFirst{ss') = ss')

70 U: invoke IH;

TRUE
FirstSplit proved.
Automatically print the proof of FirstSplit? no [confirm]

55

56

1.1. SetOfElemType

type SetOjElemType,

needs type ElemType;

Appendix I
Types Used in. Proofs

declare reflexive, s, s1, s2, ss: SetOfElemType;

declare ii, i, i1, i2, x: ElemType;

interfaces NewSetOfElemType, s add x, s rem i, s diff s1, s int s1, s union s1
: SetOfElemType;

infIx union, diff, int, rem, add;

interfaces i in!", isNewSetOfElemType(s), s subset s1, Induction(s), NormaIForm(s)

: Boolean;

infIx subset, in;

axioms reflexive = reflexive = = TRUE,
NewSetOfElemType = s add i = = FALSE,

s add i = NewSetOfElemType = = FALSE;

axioms NewSetOfElemType rem i = = NewSetOfElemType,
(s add x) rem i

= = if X= i
then s rem i
else (s rem i) add x;

a..xioms NewSetOfElemType dill s = = NewSetOfElemType,
(s add x) diff s1

= = if x in s1
then s difl s1

else (s diff s1) add x;

axioms NewSetOfElemType int 51 = = NewSetOfElemType,

(s add x) int s1

= = if x in s1
then (s int 51) add x
else s int s1 ;.

axioms NewSetOfElemType union s1 = = s1,
(s add x) union s1 = = (s union s1) add x;

axioms x in NewSetOfElemType = = FALSE,
i in (s add x) = = ({i = x) or i in s);

axiom isNewSetOfElemType(s) = = (s = NewSetOfElemType);

derme s = s1 = = (s subs.", ': ~1 and s1 subset s),

s subset s1
= = all x' (x' in s imp x' in s1);

schemas Induction(s)
= = cases(Prop(NewSetOfElemType), ali ss, ii (IH(ss)

imp Prop(ss add ii))),

NormaIForm(s)
= = cases(Prop(NewSetOfElemType), ali ss, ii (Prop(ss add ii)));

end {SetOjElemType} ;

57

58

1.2. SequenceOflnteger
type SequenceOflnteger,

declare dummy, ss, s, s1, s2: SequenceOflnteger;

declare k, ii, i, i1, i2, j: Integer;

interfaces NewSequenceOflntegel, s apr i, i apl s, seq(i), s1 join s2, LessFirst(s),
LessLast(s), dedup(s}, reverse(s}, Rotate(s, k), Initial(s, k),

_ Lesslnitial(s, k}, deletepth(s, k), seqrange(i, D, sequpto(i)
: SequenceOflnteger;

infIx join, api, apr;

interfaces isNew8equenceOflnteger(s), s1 subseq s2, Firstlnduction{s), Induction(s),
NormaIForm(s), i in s,- nodups(s}, disjoint(s', s2): Boolean;

infIx in, subseq;

interfaces Length(s), First(s), Last(s), pth(s, k): Integer;

axioms dummy=dummy = = TRUE,
NewSequenceOflnteger = s apr i = = FALSE,
s apr i = NewSequenceOflnteger = = FALSE,
5 apr i = s1 apr i1 = = «s= 51) and (i::; i1));

axioms i apl NewSequenceOfinteger = = NewSequenceOflnteger apr i,
iapl(sapri1) = = (iapls)apri1;

axiom seq(i) = ::; NewSequenceOflnteger apr i;

axioms NewSequenceOflnteger join s = = s,
(s apr i) join s1 = = s join (i apl 51);

_ axiom LessFirst(s apr i)
= = if s = NewSequenceOflnteger

then NewSequenceOflnteger
else LessFirst(s) apr i;

axiom LessLast(s apr i) = = 5;

axioms dedup(NewSequenceOflnteger} = = NewSequenceOflnteger,

dedup(s apr i)
= = ifi in s

then dedup{s)
else dedup(s) apr i;

axioms reverse(NewSequenceOflnteger) = = NewSequenceOfinteger,
reverse(s apr i) = = i apl reverse(s);

axiom isNewSequenceOflnteger{s) = = (s = NewSequenceOflnteger);

axioms s1 subseq (s apr i)
= = { (s1 = NewSequenceOflnteger) or s1 subseq s

or LessLast(s1) subseq sand (Last(s1) = i}),
s subseq NewSequenceOflnteger = = .(s = NewSequenceOflnteger);

axioms i in NewSequenceOflnteger = = FALSE,
iin{sapri1) = = (iinsor{i=i1»;

axioms nodups{s apr i} = = (nodups(s) and -(i in s»,
nodups(NewSequenceOflnteger) = = TRUE;

axioms disjoint(NewSequenceOflnteger, s) = = TRUE,
disjoint(s apr i, s1) = = (disjoint(s, s1) and -(i in s1»;

axioms Length(NewSequenceOflnteger} = = o.
. Length(s apr i) = = Length(s) + 1; ;

axiom First(s apr i) = = if s = NewSequenceOflnteger
then i
else First(s);

axiom Last(s apr i) = = i;

rulelemmas NewSequenceOflnteger = i apt s = = FALSE,
i apl 5 = NewSequenceOflnteger = = FALSE;

ru lelemmas s join (s1 apr i) = = (s join s1) apr i,
s join NewSequenceOflnteger = = s.
(i apl s1) join s2 = = i apl (s1 join s2),
(s join (i apl s1» join s2 = = s join {i apl (s1 join 52»,
s join (s1 join s2) = = (s join s1) join s2;

rulelemma LessFirst(i apl s) = = s;

ruIelemma LessLast(i apl s) = = if s = NewSequenceOflnteger

59

o

60

then NewSequenceOflnteger
else i apl LessLast(s);

rulelemma i in (i1 apl s) = = (i in s or (i = i1»;

rulelemma nodups(i apl s) = = (nodups(s) and -(i in s»;

rulelemma First(i apl s) = = i;

rulelemma Last(i apl s) = = if s = NewSequenceOflnteger
then i
else Last(s);

derme Rotate(s, k)
= = if (s = NewSequenceOflnteger) or (k = 0)

then s
else Rotate(LessFirst(s} apr First(s), k-1),

Initial(s, k)
= = if (s = NewSequenceOflnteger) or (k = 0)

then NewSeq uenceOfl nteger
else First(s) apllnitial(LessFirst{s), k-1),

Lesslnitial(s, k)
= = if (s = NewSequenceOflnteger) or (k = 0)

then s
else Lesslnitial(LessFirst(s), k-1),

deletepth(s, k)

= = if k = 1
then LessFirst(s)
else First(s) apl deletepth(LessFirst(s), k·1),

seqrange(i, j)

= = if j<i
then NewSequenceOfinteger
else seqrange(i, j·1) apr j,

pth(s, k)

= = if k = 1
then First(s)
else pth(LessFirst(s), k-1),

sequpto(i) = = seqrange(1, i);

schemas Firstlnduction(s)
= = cases(Prop(NewSequenceOflnteger), all ss, ii (IH(ss)

imp Prop(ii apl ss»),

Induction(s}
= = cases{Prop(NewSequenceOflnteger), all ss, ii (IH(ss)

imp Prop{ss apr ii))),

NormaIForrn{s)
= = cases{Prop(NewSequenceOflnteger}, all ss, ii (Prop(ss apr ii)));

end {SequenceOpnteger) ;

61

..

, -, ------ ---, ---- -:------:---------------,-----

o 62

References

[Musser SO) Musser, D. R., "On proving inductive properties of abstract data types," in Proceedings
of the Seventh ACM Symposium on Principles of Programming Languages, ACM SIGPLAN,
1980. .

	Table of Contents
	Preface
	1 Proof of subseq transitivity
	2 The Knuth-Bendix Algorithm on Group Theory Axioms
	3 Simple Send VCs
	4 Proof of Rotate Twice
	Appendix I Types Used in Proofs
	References

