AFFIRM Annotated Transcripts
Raymond L. Bates and Susan L. Gerhart, Editors
AFFIRM

Annotated Transcripts

Raymond L. Bates and Susan L. Gerhart, Editors

Version 2.0 - February 19, 1981
Corresponds to AFFIRM Version 1.21

USC Information Sciences Institute
4676 Admiralty Way
Marina Del Rey, California 90291
(213) 822-1511 ARPANET: AFFIRM@ISIF

Copyright © 1981, USC/Information Sciences Institute
The AFFIRM Reference Library

AFFIRM is an experimental interactive system for the specification and verification of abstract data types and programs. It was developed by the Program Verification Project at the USC Information Sciences Institute (ISI) for the Defense Advanced Research Projects Agency. The Reference Library is composed of five documents:

Reference Manual
A detailed discussion of the major concepts behind AFFIRM presented in terms of the abstract machines forming the system's structure as seen by the user.

Users Guide
A question-and-answer dialogue detailing the whys and wherefores of specifying and proving using AFFIRM.

Type Library
A listing of several abstract data types developed and used by the ISI Program Verification Project. The data type specifications are maintained in machine-readable form as an integral part of the system.

Annotated Transcripts
A series of annotated transcripts displaying AFFIRM in action, to be used as a sort of workbook along with the Users Guide and Reference Manual.

Collected Papers
A collection of articles authored by members of the ISI Program Verification Project (past and present), as well as an annotated bibliography of recent papers relevant to our work.

Program Verification Project Members

Cover designs by Nelson Lucas.

Special dedication to Affirmed, the only race horse named after a verification system.

This research was supported by the Defense Advanced Research Projects Agency and the Rome Air Defense Command. Views and conclusions are the authors'.

Table of Contents

1. Proof of subseq transitivity 1
2. The Knuth-Bendix Algorithm on Group Theory Axioms 10
3. Simple Send VCs 16
4. Proof of Rotate Twice 38
Appendix I. Types Used in Proofs 56
 I.1. SetOfElemType 56
 I.2. SequenceOfInteger 58
Preface

The AFFIRM Annotated Transcripts volume illustrates a number of features of AFFIRM. Each transcript is prefaced with a short description of what the transcript deals with and other highlights. All of these transcripts are from the current system as of the writing of this volume. Some of these proofs are highly polished and many people contributed to them.
1. Proof of subseq transitivity

The main point of this proof, aside from its 'historical' significance and that it took us a week to find, is the reasoning involved in disjunctions. The axiomatic definition of subseq is

\[
\begin{align*}
 s \text{ subseq } \text{NewSequenceOfInteger} & \iff (s=\text{NewSequenceOfInteger}) \\
 s \text{ subseq } (s1 \text{ apr } i) & \iff (s=\text{NewSequenceOfInteger} \\
 & \quad \text{or } s \text{ subseq } s1 \\
 & \quad \text{or } \text{Last}(s)=i \text{ and } \text{LessLast}(s) \text{ subseq } s1
\end{align*}
\]

The creation of the axioms for subseq was stimulated by John Ulrich's posing this problem to us during his visit to ISI. The first axioms we came up with were like

\[
\begin{align*}
 \text{NewSequenceOfInteger} \text{ subseq } s & \iff \text{TRUE} \\
 (s \text{ apr } i) \text{ subseq } \text{NewSequenceOfInteger} & \iff \text{FALSE} \\
 (s \text{ apr } i) \text{ subseq } (s1 \text{ apr } i1) & \iff \\
 & \quad (i=i1 \text{ and } s \text{ subseq } s1 \text{ or } s \text{ apr } i \text{ subseq } s1)
\end{align*}
\]

This formulation follows the way one would program subseq, chopping off end elements successively and comparing them. The proof of subseq transitivity using these axioms was never accomplished because we could not find any way to use our usual Induction. (Moore accomplished this same proof at SRI using a rather complicated ordering and their generalized induction mechanism.) With the change in axioms the following proof was easily found. Gerrard Terrine of IRIA pointed out to us that our second axioms have the seed of transitivity built into them.

There are some lessons here. First, you have to decide whether to have many induction methods or just a few schemas. We have chosen the latter course, whereas Boyer and Moore extensively pursued the former. Second, these axioms are not programs. The variability of expressiveness in axioms beyond the usual recursion seems worth using.

See Appendix I on page 56 for a listing of the type SequenceOfInteger.
We are increasing the linewidth so the transcript fills a printed page (the default value is 79).

profile TerminalLineWidth = 88;

TerminalLineWidth: 88

needs type SequenceOfInteger;

compiled for AFFIRM on 7-Aug-80 12:38:59
file created for AFFIRM on 7-Aug-80 11:10:22
SEQUENCEOFINTEGER.COMS

(File created under Affirm 108)
<PVLIBRARY>SEQUENCEOFINTEGER.COM.3

The needs command gives us the current SequenceOfInteger. The message about "(File created ...)") states that the loaded version of SequenceOfInteger wasn't created in the current version of Affirm, but the version difference is irrelevant. The library version of SequenceOfInteger will be different if you repeat this transcript.

declare s1,s2,s3:SequenceOfInteger;

s1, s2, s3: SequenceOfInteger

try subseqTrans, s1 subseq s2 and s2 subseq s3 imp s1 subseq s3;

Making node subseqTrans a theorem.
subseqTrans is untried.

all s1, s2, s3 (s1 subseq s2 and s2 subseq s3 imp s1 subseq s3)

It should be clear after studying the axioms that s3 is the most natural variable to induct on, since the axioms permute the constructors through the second parameter position of subseq.

employ Induction(s3);

Case NewSequenceOfInteger: Prop(NewSequenceOfInteger) remains to be shown.
Case apr: all ss, ii (IH(ss) imp Prop(ss apr ii)) remains to be shown.
(NewSequenceOfInteger:)
all s1, s2 (s1 subseq s2 and (s2 = NewSequenceOfInteger) imp s1 = NewSequenceOfInteger)
9 U: replace s2;

TRUE

10 U:

We have proved the basis case (NewSequenceOfInteger) so off we go to the induction step. We could have turned on AutoNext, a profile entry, so we wouldn't have to explicitly do the next command.

11 U: next;

Going to leaf apr:

all ss', ii', s1, s2
(IH(ss', 1 {subseqTrans}) and s1 subseq s2
 and (s2 = NewSequenceOfInteger) or s2 subseq ss'
 or LessLast(s2) subseq ss' and (Last(s2) = ii')
 imp (s1 = NewSequenceOfInteger) or s1 subseq ss'
 or LessLast(s1) subseq ss' and (Last(s1) = ii'))

12 U: suppose s2 = NewSequenceOfInteger;

(yes:) all ss', ii', s1, s2
((s2 = NewSequenceOfInteger) and IH(ss', 1 {subseqTrans})
 and s1 subseq s2
 imp (s1 = NewSequenceOfInteger) or s1 subseq ss'
 or LessLast(s1) subseq ss' and (Last(s1) = ii'))

13 U:

We could have done a split instead, but sometimes it is harder to figure out what a split will do.

14 U: print proof;

theorem subseqTrans, s1 subseq s2 and s2 subseq s3 imp s1 subseq s3;

proof tree:
8: subseqTrans
 employ Induction(s3)
9: NewSequenceOfInteger:
 2 replace s2
 (proven!)
12: apr:
 3 suppose s2 = NewSequenceOfInteger
?:> yes:
15 U: replace s_2;

TRUE

16 U: next;

Going to leaf no.:

all s_1, s_2, s_3, i_1, i_2

($s_2 \sim = \text{NewSequenceOfInteger}$ and $\text{IH}(ss', 1 \{\text{subseqTrans}\})$
and $s_1 \text{ subseq } s_2$
and $s_2 \text{ subseq } ss'$
or $\text{LessLast}(s_2) \text{ subseq } ss'$ and $(\text{Last}(s_2) = i_2')$
imp $(s_1 = \text{NewSequenceOfInteger})$ or $s_1 \text{ subseq } ss'$
or $\text{LessLast}(s_1) \text{ subseq } ss'$ and $(\text{Last}(s_1) = i_1')$

17 U: The other case of event 12: not($s_2 = \text{NewSequenceOfInteger}$).

18 U: suppose $s_2 \text{ subseq } ss'$;

(yes:)
all ss', i_1', s_1, s_2

($s_2 \sim = \text{NewSequenceOfInteger}$ and $\text{IH}(ss', 1 \{\text{subseqTrans}\})$
and $s_1 \text{ subseq } s_2$
imp $(s_1 = \text{NewSequenceOfInteger})$ or $s_1 \text{ subseq } ss'$
or $\text{LessLast}(s_1) \text{ subseq } ss'$ and $(\text{Last}(s_1) = i_1')$

19 U: invoke IH;

Now we need the Induction Hypothesis to link s_1, ss', and s_2 transitively.

all ss', i_1', s_1, s_2 (some s_1', s_2'

($s_2 \text{ subseq } ss'$ and $(s_2 \sim = \text{NewSequenceOfInteger})$
and $s_1' \text{ subseq } s_2'$ and $s_2' \text{ subseq } ss'$ imp $s_1' \text{ subseq } ss'$
and $s_1 \text{ subseq } s_2$
imp $(s_1 = \text{NewSequenceOfInteger})$ or $s_1 \text{ subseq } ss'$
or $\text{LessLast}(s_1) \text{ subseq } ss'$ and $(\text{Last}(s_1) = i_1')$)

20 U:
After invoking the induction hypothesis we have to instantiate s_1' and s_2', the free variables of the prop we are inducting on. Let's see if search can find it.

21 U: search ;

1/13: $(s_2' = s)$ and $(s_1' = s_2)$
2/13: $s_2' = s$
 1/3: $s_1' = s_2$
 2/3: $s_1' = s_1$

Proved by chaining and narrowing using the substitution

$(s_2' = s_2)$ and $(s_1' = s_1)$

TRUE

22 U: next;

Going to leaf no:.

all ss', ii', s_1, s_2
 (¬$(s_2$ subseq ss') and $(s_2 = \text{NewSequenceOfInteger})$
 and IH$(ss', 1 \{\text{subseqTrans}\})$
 and s_1 subseq s_2
 and $\text{LessLast}(s_2)$ subseq ss'
 and $\text{Last}(s_2) = ii'$
 imp $(s_1 = \text{NewSequenceOfInteger})$ or s_1 subseq ss'
 or $\text{LessLast}(s_1)$ subseq ss' and $(\text{Last}(s_1) = ii'))$

23 U:

The other case from event 18: not$(s_2$ subseq ss). The system doesn't realize that if s_2 isn't $\text{NewSequenceOfInteger}$ then $s_2 = \text{LessLast}(s_2)$ apr $\text{Last}(s_2)$, but by employing the NormalForm schema we will enumerate the cases that s_2 can take on ($\text{NewSequenceOfInteger}$ apr) thus firing the axioms for subseq with respect to s_2.

24 U: employ NormalForm(s_2) ;

Case $\text{NewSequenceOfInteger}$: Prop($\text{NewSequenceOfInteger}$) proven.

Case apr: all ss, ii (Prop$(ss$ apr $ii)$) remains to be shown.

(apr:)

all ss', ii', ss, ii, s_1
 (¬((ss' apr ii') subseq ss) and IH$(ss, 1 \{\text{subseqTrans}\})$
 and $s_1 = \text{NewSequenceOfInteger}$
 and s_1 subseq ss'
 or $\text{LessLast}(s_1)$ subseq ss' and $(\text{Last}(s_1) = ii')$
 and ss' subseq ss)
and $i'^* = i$
imp $s_1 \text{ subseq } ss$
or $\text{LessLast}(s_1) \text{ subseq } ss$ and $(\text{Last}(s_1) = i)$

25 U: replace i ;

all $ss', ii', ss, ii, s1$
($((ss' \text{ apr } ii') \text{ subseq } ss)$ and $\text{IH}(ss, 1 \{\text{subseqTrans}\})$
imp $s_1 = \text{NewSequenceOfInteger}$
or if $s_1 \text{ subseq } ss'$$
then $ss' \text{ subseq } ss$ and $(ii' = i)$
imp $s_1 \text{ subseq } ss$
or $\text{LessLast}(s_1) \text{ subseq } ss$
and $\text{Last}(s_1) = ii'$$
else $\text{LessLast}(s_1) \text{ subseq } ss'$$
and $\text{Last}(s_1) = ii'$
and $ss' \text{ subseq } ss$
and $ii' = ii$
imp $s_1 \text{ subseq } ss$ or $\text{LessLast}(s_1) \text{ subseq } ss$

26 U: suppose $s_1 \text{ subseq } ss'$;

(yes!)
all $ss', ii', ss, ii, s1$
($s_1 \text{ subseq } ss' \text{ and } ((ss' \text{ apr } ii') \text{ subseq } ss)$
and $\text{IH}(ss, 1 \{\text{subseqTrans}\})$
and $s_1 = \text{NewSequenceOfInteger}$
and $ss' \text{ subseq } ss$
and $ii' = ii$
imp $s_1 \text{ subseq } ss$
or $\text{LessLast}(s_1) \text{ subseq } ss$ and $(\text{Last}(s_1) = ii)$

27 U: invoke IH ;

all $ss', ii', ss, ii, s1$ (some s_1', s_2
($s_1 \text{ subseq } ss' \text{ and } ((ss' \text{ apr } ii') \text{ subseq } ss)$
and $s_1' \text{ subseq } s_2$ and $s_2 \text{ subseq } ss$ imp $s_1' \text{ subseq } ss$
and $s_1 = \text{NewSequenceOfInteger}$
and $ss' \text{ subseq } ss$
and $ii' = ii$
imp $s_1 \text{ subseq } ss$
or $\text{LessLast}(s_1) \text{ subseq } ss$ and $(\text{Last}(s_1) = ii)$)

28 U: search ;

1/16: $(s_2 = ss') \text{ and } (s_1' = s_1)$
Proved by chaining and narrowing using the substitution

\((s_2 = ss')\) and \((s_1' = s_1)\)

TRUE

29 U: \textbf{next;}

Going to leaf no.:

all \(ss', ii', ss, ii, s_1\)

\(\neg (s_1 \text{ subseq } ss')\)

and \(\neg ((ss' \text{ apr } ii') \text{ subseq } ss)\)

and \(IH(ss, 1 \{\text{subseqTrans}\})\)

and \(s_1 = \text{NewSequenceOfInteger}\)

and LessLast(s_1) subseq ss'

and Last(s_1) = ii'

· and ss' subseq ss

and ii' = ii

imp \(s_1 \text{ subseq } ss\) or LessLast(s_1) subseq ss)

30 U:

\textit{The other case of step 26 : not}(s_1 \text{ subseq } ss').

31 U: \textbf{invoke IH ;}

all \(ss', ii', ss, ii, s_1\) (some \(s_1', s_2\))

\(\neg (s_1 \text{ subseq } ss')\)

and \(\neg ((ss' \text{ apr } ii') \text{ subseq } ss)\)

and \(s_1' \text{ subseq } s_2\) and \(s_2 \text{ subseq } ss\) imp \(s_1' \text{ subseq } ss\)

and \(s_1 = \text{NewSequenceOfInteger}\)

and LessLast(s_1) subseq ss'

and Last(s_1) = ii'

· and ss' subseq ss

and ii' = ii

imp \(s_1 \text{ subseq } ss\) or LessLast(s_1) subseq ss)

32 U: \textbf{search ;}

1/17: \((s_2 = ss')\) and \((s_1' = s_1)\)
2/17: \((s_2 = ss)\) and \((s_1' = ss' \text{ apr } ii')\)
3/17: \(s_2 = ss' \text{ apr } ii'\)
4/17: \(s_1' = ss' \text{ apr } ii'\)
1/5: \(s_2 = ss\)
2/5: \(s_2 = ss' \text{ apr } ii'\)
3/5: s2 = ss'
4/5: s2 = s1
5/5: s2 = LessLast(s1)

5/17: (s2 = ss') and (s1' = LessLast(s1))
Proved by chaining and narrowing using the substitution

(s2 = ss') and (s1' = LessLast(s1))

TRUE

subseqTrans proved.

33 U:

We are all done with subseqTrans, let's review the proof.

34 U: print proof;

theorem subseqTrans, s1 subseq s2 and s2 subseq s3 imp s1 subseq s3;

proof tree:
8: subseqTrans
 employ Induction(s3)
9: NewSequenceOfInteger:
 2 replace s2
 (proven!)
12: apr:
 3 suppose s2 = NewSequenceOfInteger
15: yes:
 4 replace s2
 (proven!)
18: no:5 suppose s2 subseq ss'
19: yes:
 6 invoke IH
21: 8 put (s2' = s2) and (s1' = s1) {search}
21: (proven!)
24: no:7 employ NormalForm(s2)
 NewSequenceOfInteger:
 Immediate
25: apr:
 10 replace ii
26: 11 suppose s1 subseq ss'
27: yes:
 12 invoke IH
28: 14 put (s2 = ss') and (s1' = s1) {search}
28: (proven!)
31: no:13 invoke IH
32: 16 put s2 = ss' and s1' = LessLast(s1) {search}
32: -> (proven)

35 U: quit;

Type CONTINUE to return to AFFIRM.
2. The Knuth-Bendix Algorithm on Group Theory

Axioms

This transcript shows the Knuth-Bendix algorithm generating a long sequence of rules. You will note we start with 3 rules, the 3 axioms which define a group:

axiom e op x = x;
axiom inv(x) op x = e;
axiom (x op y) op z = x op (y op z)

and end up with the 3 rules above and 7 rule lemmas:

inv(e) = e
inv(inv(y)) = y
inv(y op y') = inv(y') op inv(y)
inv(y) op (y op z) = z
z op e = z
y op (inv(y) op z) = z
y op inv(y) = e

This process is not automatic. You will note in the middle of the transcript when the system is proposing a new rule we have to reverse its direction (see page 14).

The rule lemmas could have been proven as theorems by induction using the first three axioms. The "induction" accomplished by Knuth-Bendix is discussed in [Musser 80].
(Reading AFFIRM commands from <AFFIRM>GRP1.AXIOMS.3)
type Grp1
reflexive: Grp1
New rule:
 reflexive = reflexive
 \rightarrow \text{TRUE}
1/1. Affirmed.
x, y, z: Grp1
Rule simplifies to TRUE. Affirmed.
New rule:
 e op x
 \rightarrow x
1/1. Affirmed.
New rule:
 inv(x) op x
 \rightarrow e
1/1.. Affirmed.
New rule:
 (x op y) op z
 \rightarrow x op (y op z)
1/1.!!
From (x op y) op z = = x op (y op z) and inv(x) op x = = e
we obtain a new rule:
 inv(y) op (y op z)
 \rightarrow z
.!
2/2.!
From inv(y) op (y op z) = = z
and inv(y) op (y op z) = = z
we obtain a new rule:
 inv(inv(y)) op z
 \rightarrow y op z
.!!
From inv(y) op (y op z) = = z
and (x op y) op z = = x op (y op z)
we obtain a new rule:
 inv(x op y') op (x op (y' op z))
 \rightarrow z
.!
From inv(y) op (y op z) = = z
and inv(x) op x = = e
we obtain a new rule:
 z op e
 \rightarrow z
From \(\text{inv}(y) \circ (y \circ z) = = z \)
and \(e \circ x = = x \)
we obtain a new rule:
\[
\text{inv}(e) \circ z \\
\rightarrow z
\]
3/6.!!.!!.
From \(z \circ e = = z \)
and \(\text{inv}(x) \circ x = = e \)
we obtain a new rule:
\[
\text{inv}(e) \\
\rightarrow e
\]
4/7.!!..
5/7 discarding rule
\[
\text{inv}(e) \circ z = z
\]
6/7.!!.
From \(\text{inv}(\text{inv}(y)) \circ z = = y \circ z \)
and \(z \circ e = = z \)
we obtain a new rule:
\[
\text{inv}(\text{inv}(y)) \\
\rightarrow y
\]
. discarding rule
\[
\text{inv}(\text{inv}(y)) \circ z = y \circ z
\]
7/8.!
From \(\text{inv}(\text{inv}(y)) = = y \)
and \(\text{inv}(y) \circ (y \circ z) = = z \)
we obtain a new rule:
\[
y \circ (\text{inv}(y) \circ z) \\
\rightarrow z
\]
.!
From \(\text{inv}(\text{inv}(y)) = = y \)
and \(\text{inv}(x) \circ x = = e \)
we obtain a new rule:
\[
y \circ \text{inv}(y) \\
\rightarrow e
\]
.!!.
8/10.!!...!!.
From \(y \circ \text{inv}(y) = = e \)
and \((x \circ y) \circ z = = x \circ (y \circ z) \)
we obtain a new rule:
\[
x \circ (y \circ \text{inv}(x \circ y)) \\
\rightarrow e
\]
.!!.
9/11.!!!.!!...!!.
From \(y \circ (\text{inv}(y) \circ z) = = z \)
and \((x \circ y) \circ z = = x \circ (y \circ z) \)
we obtain a new rule:
\[x \text{ op } (y' \text{ op } \text{ inv}(x \text{ op } y') \text{ op } z) \]
\[\rightarrow z \]
!!!
10/12...!!!
From \[x \text{ op } (y' \text{ op } \text{ inv}(x \text{ op } y')) = = e \]
and \[y \text{ op } (\text{ inv}(y) \text{ op } z) = = z \]
we obtain a new rule:
\[y' \text{ op } \text{ inv}(\text{ inv}(y) \text{ op } y') \]
\[\rightarrow y \]
!!!
From \[x \text{ op } (y' \text{ op } \text{ inv}(x \text{ op } y')) = = e \]
and \[\text{ inv}(y) \text{ op } (y \text{ op } z) = = z \]
we obtain a new rule:
\[y' \text{ op } \text{ inv}(y \text{ op } y') \]
\[\rightarrow \text{ inv}(y) \]
!!!
From \[x \text{ op } (y' \text{ op } \text{ inv}(x \text{ op } y')) = = e \]
and \[(x \text{ op } y) \text{ op } z = = x \text{ op } (y \text{ op } z) \]
we obtain a new rule:
\[x' \text{ op } (y \text{ op } (y' \text{ op } \text{ inv}(x' \text{ op } (y \text{ op } y')))) \]
\[\rightarrow e \]
!!!
11/15...
From \[y' \text{ op } \text{ inv}(y \text{ op } y') = = \text{ inv}(y) \]
and \[y' \text{ op } \text{ inv}(y \text{ op } y') = = \text{ inv}(y) \]
we obtain a new rule:
\[\text{ inv}(y \text{ op } y \# 3) \text{ op } y \]
\[\rightarrow \text{ inv}(y \# 3) \]
!!!
. discarding rule
\[x \text{ op } (y' \text{ op } \text{ inv}(x \text{ op } y')) = = e \]

!!!
From \[y' \text{ op } \text{ inv}(y \text{ op } y') = = \text{ inv}(y) \]
and \[y \text{ op } (\text{ inv}(y) \text{ op } z) = = z \]
we obtain a new rule:
\[\text{ inv}(y \text{ op } \text{ inv}(y'')) \]
\[\rightarrow y'' \text{ op } \text{ inv}(y) \]
!!!
From \[y' \text{ op } \text{ inv}(y \text{ op } y') = = \text{ inv}(y) \]
and \[\text{ inv}(y) \text{ op } (y \text{ op } z) = = z \]
we obtain a possible new rule:
\[\text{ inv}(y'') \text{ op } \text{ inv}(y) = = \text{ inv}(y \text{ op } y'') \]

Ok?

These are the user's options when Knuth-Bendix asks what to do with a possible new rule:

one of:
Yes
Reverse it
Suppress it (put it on the list "BadEquations")
Treat it as Equation \(\rightarrow TRUE \)
Instead accept another equation from the terminal

The reversal decision was based on the structure-reducing characteristic of finite termination.

Ok? Reverse it [confirm]

12/18. discarding rule
\(y' \text{ op } \text{inv}(y \text{ op } y') = \text{inv}(y) \)

13/18 discarding rule
\(\text{inv}(y \text{ op } \text{inv}(y')) = y'' \text{ op } \text{inv}(y) \)

14/18 discarding rule
\(\text{inv}(y \text{ op } y \# 3) \text{ op } y = \text{inv}(y \# 3) \)

15/18 discarding rule
\(y' \text{ op } \text{inv}(y) \text{ op } y' = y \)

16/18 discarding rule
\(\text{inv}(x \text{ op } y') \text{ op } (x \text{ op } (y' \text{ op } z)) = z \)

17/18 discarding rule
\(x \text{ op } (y' \text{ op } (\text{inv}(x \text{ op } y') \text{ op } z)) = z \)

18/18 discarding rule
\(x' \text{ op } (y \text{ op } (y' \text{ op } \text{inv}(x' \text{ op } (y \text{ op } y')))) = e \)

Affirmed.
Leaving Grp1; now editing Basis.

3U: print type Grp1 ;

type Grp1 ;
declare reflexive, x, y, z, y', x', y \# 3, y'' : Grp1 ;

interfaces e, \text{inv}(x), x \text{ op } y : Grp1 ;

infix \text{ op } ;

axiom reflexive = reflexive = \(\leftrightarrow TRUE \);

axioms e \text{ op } x = = x,
\text{inv}(x) \text{ op } x = = e,
(x \text{ op } y) \text{ op } z = = x \text{ op } (y \text{ op } z) ;
rulelemmas \(\text{inv}(e) = e, \)
\(\text{inv}(\text{inv}(y)) = y, \)
\(\text{inv}(y \text{ op } y'') = \text{inv}(y'') \text{ op } \text{inv}(y); \)

rulelemmas \(\text{inv}(y) \text{ op } (y \text{ op } z) = z, \)
\(z \text{ op } e = z, \)
\(y \text{ op } (\text{inv}(y) \text{ op } z) = z, \)
\(y \text{ op } \text{inv}(y) = e; \)

end \{
GrpJ\};

4 U: quit;

Type CONTINUE to return to AFFIRM.
3. Simple Send VC

This transcript shows a verification of very simple message-passing system. The system is described by a Pascal-like program. It uses two abstract data types, SetOfElemType and ElemType. The data types are pre-defined and kept in <PVL1BRARY> and used to verify the program (see page 56, Appendix I, for a listing of the type SetOfElemType). More extensive annotation and explanation of the first part appear in the User's Guide.

Transcript file <RBATES>AFFIRMTRANSCRIPT.11-NOV-80.2 is open in the AFFIRM system <AFFIRM>AFFIRM.EXE.120

1 U:

We are increasing the AverageNameLength and the TerminalLineWidth so this transcript looks better for our printing device.

2 U: profile AverageNameLength = 10;

 AverageNameLength: 10

3 U: profile TerminalLineWidth = 88;

 TerminalLineWidth: 88

4 U: needs type SetOfElemType;

 compiled for AFFIRM on 22-Aug-80 14:20:53
 file created for AFFIRM on 22-Aug-80 14:20:16
 SETOFELEMTYPECOMS

 (File created under Affirm 111)
 compiled for AFFIRM on 22-Aug-80 09:22:12
 file created for AFFIRM on 22-Aug-80 09:22:00
 ELEMTYPECOMS

 (File created under Affirm 111)
 <PVL1BRARY>ELEMTYPE.COM.2<PVL1BRARY>SETOFELEMTYP~.COM.2

5 U: print file <pvl1ibrary>simplesend.program

 <PVL1BRARY>SIMPLESEND.PROGRAM.7:
program SendReceive;
{
 This set of three procedures simulates an overly simple message-passing system. In SimpleSend, messages are simply "picked" out of RemainingToBeSent, "sent" to ReceivedSoFar, then deleted from RemainingToBeSent, which decreases from TotalToBeSent down to NewSetOfElemType. After "send" the message is either received or lost. No checks or resends are made so the strongest property we can prove about this program is that ReceivedSoFar is a subset of TotalToBeSent.
}
{
 This procedure won't be proved, just left pending.
}
procedure pick(s:SetOfElemType; var it:ElemType);
pre s = NewSetOfElemType;
post it in s';
;
{
 Nor will this procedure be proved, only assumed. Note that the use of 'or' gives us a kind of non-determinism.
}
procedure send(it:ElemType; var rec:SetOfElemType);
pre TRUE;
post rec = rec' add it' or rec = rec';
;
{
 Here's the little procedure which simulates sending and receiving messages.
}
procedure SimpleSend(TotalToBeSent:SetOfElemType;
 var ReceivedSoFar:SetOfElemType);
pre TRUE;
post ReceivedSoFar subset TotalToBeSent';
var NextToSend:ElemType;
var RemainingToBeSent : SetOfElemType;
begin
 RemainingToBeSent : = TotalToBeSent;
 ReceivedSoFar : = NewSetOfElemType;

 maintain ReceivedSoFar subset TotalToBeSent
 and RemainingToBeSent subset TotalToBeSent
 while RemainingToBeSent - = NewSetOfElemType do
 begin
 pick(RemainingToBeSent, NextToSend);
 send(NextToSend, ReceivedSoFar);
 RemainingToBeSent : = RemainingToBeSent rem NextToSend;
 end;
end;
6 U:

The units **pick** and **send** are not provable since we didn’t supply their bodies.

7 U: readp `<pvlibrary>simpleSend.program`;

(Reading Pascal program units from <PVLIBRARY>SIMPLESEND.PROGRAM.7)
The program units are SendReceive, pick, send, and SimpleSend.
Type checking SendReceive... pick... send... Simple... Simp!...

8 U: genvcs SimpleSend;

The result lemma for SimpleSend is:

```plaintext
assume computesSimpleSend, computes(SimpleSend(TotalToBeSent, ReceivedSoFar),
result(ReceivedSoFar1))
imp ReceivedSoFar1 subset TotalToBeSent;
```

There are 3 verification conditions for SimpleSend:

```plaintext
theorem SimpleSend # 1, ReceivedSoFar2 subset TotalToBeSent
and RemainingToBeSent1 subset TotalToBeSent
and RemainingToBeSent1 = NewSetOfElemType
imp ReceivedSoFar2 subset TotalToBeSent;
```

```plaintext
theorem SimpleSend # 2, NewSetOfElemType subset TotalToBeSent
and TotalToBeSent subset TotalToBeSent;
```

```plaintext
theorem SimpleSend # 3, ReceivedSoFar subset TotalToBeSent
and RemainingToBeSent subset TotalToBeSent
and RemainingToBeSent ~ = NewSetOfElemType
and computes(pick(RemainingToBeSent, NextToSend),
result(NextToSend2))
and computes(send(NextToSend2, ReceivedSoFar),
result(ReceivedSoFar3))
imp ReceivedSoFar3 subset TotalToBeSent
and (RemainingToBeSent rem NextToSend2) subset TotalToBeSent;
```

(VC1:)
Program SimpleSend is awaiting the proof of vcs SimpleSend # 1, SimpleSend # 2,
and SimpleSend # 3.

9 U: genvcs pick,send;

The result lemma for pick is:

```plaintext
assume computespick, s = NewSetOfElemType
```
and computes(pick(s, it),
 result(it1))
 imp it1 in s;

There is 1 verification condition for pick:

theorem pick # 1, s ~ NewSetOfElemType
 imp it in s;
(VC1:)
Program pick is awaiting the proof of vc pick # 1.

The result lemma for send is:

assume computessend, computes(send(it, rec),
 result(rec1))
 imp rec1 = rec add it
 or rec1 = rec;

There is 1 verification condition for send:

theorem send # 1, rec = rec add it
 or rec = rec;
(VC1:)
Program send is awaiting the proof of vc send # 1.

10 U:
 Try to prove the first verification condition for the unit SimpleSend.

11 U: try SimpleSend # 1;

SimpleSend # 1 is untried.

TRUE
SimpleSend # 1 proved.

12 U: next;

There’s more than one unproven ancestor. You may pick one of SimpleSend # 2
or SimpleSend # 3.

13 U:
 We have proved SimpleSend# 1. The system doesn’t want to pick either verification condition
 so we will pick number 2.

14 U: try SimpleSend # 2;
SimpleSend # 2 is untried.

all TotalToBeSent (NewSetOfElemType subset TotalToBeSent and TotalToBeSent subset TotalToBeSent)

15 U: invoke subset[all] ;

TRUE
SimpleSend # 2 proved.

16 U: next;

Going to unproven ancestor SimpleSend # 3.
SimpleSend # 3 is untried.

all ReceivedSoFar, TotalToBeSent, RemainingToBeSent, NextToSend, NextToSend2, ReceivedSoFar3
(ReceivedSoFar subset TotalToBeSent and RemainingToBeSent subset TotalToBeSent
and RemainingToBeSent = NewSetOfElemType
and computes(pick(RemainingToBeSent, NextToSend),
result(NextToSend2))
and computes(send(NextToSend2, ReceivedSoFar),
result(ReceivedSoFar3))
imp ReceivedSoFar3 subset TotalToBeSent
and (RemainingToBeSent rem NextToSend2) subset TotalToBeSent)

17 U:
We are at the third verification condition. We will apply the computes lemma for pick and send.

18 U: apply computespick;

some s, it, it1
(s = NewSetOfElemType
and computes(pick(s, it),
result(it1))
imp it1 in s)

19 U: apply computessend;

(computessend $>$ computessend)

some it', rec, rec1
(computes(send(it', rec), result(rec1))
imp rec1 = rec add it'
or rec1 = rec)

20 U: put s = RemainingToBeSent, it = NextToSend, it1 = NextToSend2, it' = NextToSend2,
rec = ReceivedSoFar, rec1 = ReceivedSoFar3 ;

all ReceivedSoFar,
TotalToBeSent,
RemainingToBeSent, NextToSend, NextToSend2, ReceivedSoFar3
(computes(send(NextToSend2, ReceivedSoFar),
result(ReceivedSoFar3))
and ReceivedSoFar3
= ReceivedSoFar add NextToSend2
or ReceivedSoFar3 = ReceivedSoFar
and RemainingToBeSent ~ = NewSetOfElemType
and computes(pick(RemainingToBeSent, NextToSend),
result(NextToSend2))
and NextToSend2 in RemainingToBeSent
and ReceivedSoFar subset TotalToBeSent
and RemainingToBeSent subset TotalToBeSent
imp ReceivedSoFar3 subset TotalToBeSent
and RemainingToBeSent rem NextToSend2
subset TotalToBeSent)

21 U: declare s1:SetOfElemType;

s1: SetOfElemType

22 U: apply remSubset, s subset s1 imp s rem x subset s1;

some s, s1, x
(s subset s1
imp (s rem x) subset s1)

23 U: put s = RemainingToBeSent,s1 = TotalToBeSent,x = NextToSend2;

all ReceivedSoFar,
TotalToBeSent,
RemainingToBeSent, NextToSend, NextToSend2, ReceivedSoFar3
(RemainingToBeSent subset TotalToBeSent
and RemainingToBeSent rem NextToSend2
subset TotalToBeSent
and computes(send(NextToSend2, ReceivedSoFar),
result(ReceivedSoFar3))
and ReceivedSoFar3
= ReceivedSoFar add NextToSend2
or \(\text{ReceivedSoFar3} = \text{ReceivedSoFar} \)
and \(\text{RemainingToBeSent} = \text{NewSetOfElemType} \)
and computes(\(\text{pick}(\text{RemainingToBeSent}, \text{NextToSend}) \),
result(\(\text{NextToSend2} \))
and \(\text{NextToSend2} \) in \(\text{RemainingToBeSent} \)
and \(\text{ReceivedSoFar subset TotalToBeSent} \)
imp \(\text{ReceivedSoFar3 subset TotalToBeSent} \)

24 \(\text{U: suppose } \text{ReceivedSoFar3} = \text{ReceivedSoFar add NextToSend2}; \)

(yes:)
all \(\text{ReceivedSoFar}, \text{TotalToBeSent}, \text{RemainingToBeSent}, \text{NextToSend}, \text{NextToSend2}, \text{ReceivedSoFar3} \)
(\(\text{ReceivedSoFar3} = \text{ReceivedSoFar add NextToSend2} \)
and \(\text{RemainingToBeSent subset TotalToBeSent} \)
and \(\text{RemainingToBeSent rem NextToSend2} \)
subset \(\text{TotalToBeSent} \)
and computes(\(\text{send}(\text{NextToSend2}, \text{ReceivedSoFar}), \)
result(\(\text{ReceivedSoFar3} \))
and \(\text{RemainingToBeSent} = \text{NewSetOfElemType} \)
and computes(\(\text{pick}(\text{RemainingToBeSent}, \text{NextToSend}) \),
result(\(\text{NextToSend2} \))
and \(\text{NextToSend2} \) in \(\text{RemainingToBeSent} \)
and \(\text{ReceivedSoFar subset TotalToBeSent} \)
imp \(\text{ReceivedSoFar3 subset TotalToBeSent} \)

25 \(\text{U: replace } \text{ReceivedSoFar3}; \)

all \(\text{ReceivedSoFar}, \text{TotalToBeSent}, \text{RemainingToBeSent}, \text{NextToSend}, \text{NextToSend2}, \text{ReceivedSoFar3} \)
(\(\text{ReceivedSoFar3} = \text{ReceivedSoFar add NextToSend2} \)
and \(\text{RemainingToBeSent subset TotalToBeSent} \)
and \(\text{RemainingToBeSent rem NextToSend2} \)
subset \(\text{TotalToBeSent} \)
and computes(\(\text{send}(\text{NextToSend2}, \text{ReceivedSoFar}), \)
result(\(\text{ReceivedSoFar add NextToSend2} \))
and \(\text{RemainingToBeSent} = \text{NewSetOfElemType} \)
and computes(\(\text{pick}(\text{RemainingToBeSent}, \text{NextToSend}) \),
result(\(\text{NextToSend2} \))
and \(\text{NextToSend2} \) in \(\text{RemainingToBeSent} \)
and \(\text{ReceivedSoFar subset TotalToBeSent} \)
imp (\(\text{ReceivedSoFar add NextToSend2} \) subset \(\text{TotalToBeSent} \))

26 \(\text{U: apply addSubset, } s \text{ subset } s1 \text{ and } x \text{ in } s1 \text{ imp } s \text{ add } x \text{ subset } s1; \)
some \(s, s_1, x \)
\((s \subseteq s_1 \text{ and } x \in s_1 \)
\(\implies (s \cup \{x\}) \subseteq s_1 \)

27 U: put \(s = \text{ReceivedSoFar}, s_1 = \text{TotalToBeSent}, x = \text{NextToSend2}; \)

all \(\text{ReceivedSoFar}, \)
\(\text{TotalToBeSent}, \)
\(\text{RemainingToBeSent}, \text{NextToSend, NextToSend2, ReceivedSoFar3} \)
\((\text{ReceivedSoFar} \subseteq \text{TotalToBeSent} \)
\(\text{and } \neg(\text{NextToSend2} \in \text{TotalToBeSent}) \)
\(\text{and } \text{ReceivedSoFar} = \text{ReceivedSoFar} \cup \text{NextToSend2} \)
\(\text{and } \text{RemainingToBeSent} \subseteq \text{TotalToBeSent} \)
\(\text{and } \text{RemainingToBeSent} \setminus \text{NextToSend2} \subseteq \text{TotalToBeSent} \)
\(\text{and } \text{computes}(\text{send} (\text{NextToSend2}, \text{ReceivedSoFar}), \)
\(\text{result}(\text{ReceivedSoFar} \cup \text{NextToSend2})) \)
\(\text{and } \text{RemainingToBeSent} \setminus = \text{NewSetOfElemType} \)
\(\text{and } \text{computes}(\text{pick} (\text{RemainingToBeSent}, \text{NextToSend}), \)
\(\text{result}(\text{NextToSend2})) \)
\(\text{and } \text{NextToSend2} \in \text{RemainingToBeSent} \)
\(\text{imp}(\text{ReceivedSoFar} \cup \text{NextToSend2} \subseteq \text{TotalToBeSent}) \)

28 U: apply inSubset, \(x \in s \) and \(s \subseteq s_1 \implies x \in s_1 \);

some \(x, s, s_1 \)
\((x \in s \text{ and } s \subseteq s_1 \)
\(\implies x \in s_1) \)

29 U: search ;

1/9: \(s = \text{TotalToBeSent} \)
\(\text{and } x = \text{NextToSend2} \)
2/9: \(s = \text{RemainingToBeSent} \)
\(\text{and } x = \text{NextToSend2} \)
1/2: \(s_1 = \text{RemainingToBeSent} \)
2/2: \(s_1 = \text{TotalToBeSent} \)
Proved by chaining and narrowing
using the substitution
\(s = \text{RemainingToBeSent} \)
\(\text{and } x = \text{NextToSend2} \)
\(\text{and } s_1 = \text{TotalToBeSent} \)
TRUE

30 U: next;

Going to leaf nc:

all ReceivedSoFar,
 TotalToBeSent,
 RemainingToBeSent, NextToSend, NextToSend2, ReceivedSoFar3
 (ReceivedSoFar3
 ~ = ReceivedSoFar add NextToSend2
 and RemainingToBeSent subset TotalToBeSent
 and RemainingToBeSent rem NextToSend2
 subset TotalToBeSent
 and computes(send(NextToSend2, ReceivedSoFar),
 result(ReceivedSoFar3))
 and ReceivedSoFar3 = ReceivedSoFar
 and RemainingToBeSent ~ = NewSetOfElemType
 and computes(pick(RemainingToBeSent, NextToSend),
 result(NextToSend2))
 and NextToSend2 in RemainingToBeSent
 and ReceivedSoFar subset TotalToBeSent
 imp ReceivedSoFar3 subset TotalToBeSent)

31 U:
 This is the case where not(ReceivedSoFar3 = ReceivedSoFar add NextToSend2).

32 U: replace ReceivedSoFar3;

SimpleSend # 3 is awaiting the proof of lemmas remSubset, addSubset, and inSubset.

TRUE

33 U: print proof;

theorem SimpleSend # 3, ReceivedSoFar subset TotalToBeSent
 and RemainingToBeSent subset TotalToBeSent
 and RemainingToBeSent ~ = NewSetOfElemType
 and computes(pick(RemainingToBeSent, NextToSend),
 result(NextToSend2))
 and computes(send(NextToSend2, ReceivedSoFar),
 result(ReceivedSoFar3))
 imp ReceivedSoFar3 subset TotalToBeSent
 and (RemainingToBeSent rem NextToSend2) subset TotalToBeSent

SimpleSend # 3 uses computespick%, computessend%, remSubset%, addSubset%, and inSubset%.
proof tree:
18:1 SimpleSend#3
 apply computespick
19: 13 apply computessend
20: 14 put \(s = \text{RemainingToBeSent} \)
 and \(i = \text{NextToSend} \)
 and \(i1 = \text{NextToSend2} \)
 and \(i' = \text{NextToSend2} \)
 and \(r = \text{ReceivedSoFar} \)
 and \(r1 = \text{ReceivedSoFar3} \)
22: 15 apply remSubset
23: 17 put \(s = \text{RemainingToBeSent} \)
 and \(s1 = \text{TotalToBeSent} \)
 and \(x = \text{NextToSend2} \)
24: 18 suppose \(r = \text{ReceivedSoFar3} \)
 = ReceivedSoFar add NextToSend2
25: yes:
19 replace ReceivedSoFar3
26: 21 apply addSubset
27: 23 put \(s = \text{ReceivedSoFar} \)
 and \(s1 = \text{TotalToBeSent} \)
 and \(x = \text{NextToSend2} \)
26: 24 apply inSubset
29: 26 put \(s = \text{RemainingToBeSent} \)
 and \(x = \text{NextToSend2} \)
 and \(s1 = \text{TotalToBeSent} \)
29: (proven!)
32: no:{SimpleSend #3}
20 replace ReceivedSoFar3
-> (proven!)

34 U: We have finished off SimpleSend#3 and have only the 3 lemmas to prove. The next command will pick one of the lemmas.

35 U: next;

Going to lemma remSubset.
remSubset is untried.

all s, s1, x
 (s subset s1
 imp (s rem x) subset s1)

36 U: invoke subset[all] ;

all s, s1, x, x' (some x')
\((x' \in s \imp x' \in s' \\
and x'' \in (s \rem x) \imp x'' \in s'1) \)

37 U: put \(x' = x'' \);

all \(s, s1, x, x'' \)
\[
\begin{align*}
&\neg (x'' \in s) \\
&\quad \text{and} \quad x'' \in s \rem x \\
&\quad \imp x'' \in s1)
\end{align*}
\]

38 U: apply remEqv, \(i \in (s \rem x) \equiv i \in s \) and \(i = x \);

Please declare \(i \) (then type \(\text{ok}; \) to continue).

39 (1) U:

\textit{We have forgotten to declare} \(i \), \textit{so the system asks us to declare it.}

40 (1) U: declare \(i : \text{ElemType} \);

\(i : \text{ElemType} \)

41 (1) U: \text{ok} ;

some \(i, s', x' \)
\[
\begin{align*}
&\neg (i \in (s' \rem x')) \\
&\quad \equiv i \in s' \imp i = x'
\end{align*}
\]

42 U: search;

1/4: \(s' = s \)
\[
\begin{align*}
&\quad \text{and} \quad i = x'' \\
1/1: x' = x
\end{align*}
\]

Proved by chaining and narrowing using the substitution

\[
\begin{align*}
&s' = s \\
&\quad \text{and} \quad i = x'' \\
&\quad \text{and} \quad x' = x
\end{align*}
\]

TRUE
remSubset is awaiting the proof of lemma remEqv.

43 U: print proof ;
We have to prove the lemma remEqv.

Going to lemma remEqv.
remEqv is untried.

all i, s, x
(~ (i in (s rem x))
 eqv i in s imp i = x)

employ Induction(s);

Case NewSetOfElemType: Prop(NewSetOfElemType) proven.
Case add: all ss, ii (IH(ss)
 imp Prop(ss add ii)) remains to be shown.

(add:)
all ss', ii', i, x
(IH(ss', 30 {remEqv})
 imp if i = ii'
 then ~ i
 in if ii' = x
 then ss' rem x
 else (ss' rem x) add ii'
 eqv i = x
 else ~ i
 in if ii' = x
 then ss' rem x
 else (ss' rem x) add ii'
 eqv i in ss'
 imp i = x)

(The 'cases' command is applicable)
We could have turned on AutoCases so we wouldn't have to explicitly do the cases command.

48 U: cases;

all ss', ii', i, x
 (IH(ss', 30 \ remEqv))
 imp if i = ii'
 then ii' = x
 and ~(i in (ss' \ rem x))
 eqv i = x
 else ~(i in (ss' \ rem x))
 eqv i in ss'
 imp i = x)

49 U: invoke IH;

all ss', ii', i, x (some i', x')
 (if i' in ss' \ imp i' = x'
 then i' in (ss' \ rem x')
 or if i = ii'
 then ii' = x
 and ~(i in (ss' \ rem x)).
 eqv i = x
 else ~(i in (ss' \ rem x))
 eqv i in ss'
 imp i = x
 else i' in (ss' \ rem x')
 imp if i = ii'
 then ii' = x
 and ~(i in (ss' \ rem x))
 eqv i = x
 else ~(i in (ss' \ rem x))
 eqv i in ss'
 imp i = x))

50 U: search ;

1/4: i' = i
1/2: x' = ii'
2/2: x' = x
2/4: x' = ii'
 and i' = i
3/4: x' = x
and i' = i
4/4: x' = x
and i' = ii'
Unsuccessful.

51 U:

search couldn’t reduce the expression to true. So we can either use the put command or the choose command. Let’s use choose.

52 U: choose 1,2 ;

1/4: i' = i
2/2: x' = x
all ss', ii', i, x
(if i in ss'
 then i = x
 and ~ i
 in ss' rem x
 and i = ii'
 imp ii' = x
 else ~ i
 in ss' rem x
 and i = ii'
 imp ii' = x
 eqv i = x)

53 U: replace i;

remEqv proved.
remSubset proved.

TRUE

54 U: print status;

The untried theorems are addSubset, inSubset, pick # 1, and send # 1.
No theorems are tried.
The assumed theorems are computespick, computessend, and computesSimpleSend.
The awaiting lemma proof theorems are pick, send, SimpleSend, and SimpleSend # 3.
The proved theorems are remEqv, remSubset, SimpleSend # 1, and SimpleSend # 2.

55 U: print proof ;

theorem remEqv, i in (s rem x)
 eqv i in s
 and i ~ = x;
proof tree:

46.1 remEqv
 employ Induction(s)
 -> NewSetOfElemType:
 Immediate
48. add:
 33 cases
49. invoke IH
52. put \(i' = i \) and \(x' = x \) (choose)
53. replace \(i \)
 -> (proven!)

56 U: next;

There's more than one unproven ancestor. You may pick one of addSubset or inSubset.

57 U:

\[\text{We still have 2 more lemmas to prove before our proof of SimpleSend\# 3 will be completed.} \]

58 U: try addSubset;

addSubset is untried.

all \(s, s_1, x \)
 (\(s \subset s_1 \) and \(x \in s_1 \)
 imp (s add x) \subset s_1)

59 U: invoke subset[all];

all \(s, s_1, x, x'' \) (some \(x' \)
 (\(x' \in s \) imp \(x' \in s_1 \)
 and \(x \in s_1 \)
 and \((x'' = x) \lor x'' \in s \)
 imp \(x'' \in s_1)\))

60 U: put \(x' = x'' ; \)

all \(s, s_1, x, x'' \)
 (\(\neg (x'' \in s) \)
 and \(x \in s_1 \)
 and \(x'' = x \)
 imp \(x'' \in s_1)\)

61 U: replace \(x; \)
addSubset proved.

TRUE

62 U: print proof ;

theorem addSubset, s subset s1
 and x in s1
 imp (s add x) subset s1 ;

proof tree:
59: !
 invoke subset | all |
60: 37 put x' = x''
61: 38 replace x
 -> (proven!)

63 U: next ;

Going to unproven ancestor inSubset.
inSubset is untried.

all x, s, s1
 (x in s and s subset s1
 imp x in s1)

64 U:

 The last lemma for SimpleSend#3.

65 U: invoke subset;

all x, s, s1 (some x'
 (x in s
 and x' in s imp x' in s1
 imp x in s1))

66 U: search ;

1/1: x' = x
Proved by chaining and narrowing
using the substitution
x' = x

TRUE
inSubset proved.
SimpleSend # 3 proved.
Program SimpleSend verified!

67 U:

That's it, we have proved the unit SimpleSend.

68 U: print proof;

theorem inSubset, x in s
 and s subset s1
 imp x in s1;

proof tree:
65;! inSubset
 invoke subset
66: 39 put x' = x {search}
66:-> (proven!)

69 U:

This print command will print any theorems that we have proven in this session.

70 U: print proof theorems;

theorem inSubset, x in s
 and s subset s1
 imp x in s1;

proof tree:
65;! inSubset
 invoke subset
66: 39 put x' = x {search}
66:-> (proven!)

theorem addSubset, s subset s1
 and x in s1
 imp (s add x) subset s1;

proof tree:
59;! addSubset
 invoke subset | all |
60: 37 put x' = x''
61: 38 replace x
 (proven!)
theorem remEqv, \(i \in (s \rem x) \)
\[
eqv \quad i \in s
\]
and \(i \neq x; \)

proof tree:
46: \(\text{remEqv} \)
employ Induction(s)
NewSetOfElemType:
Immediate
48: \(\text{add} \)
33 \(\text{cases} \)
49: \(\text{invoke IH} \)
52: \(i' = i \)
and \(x' = x \{ \text{choose} \} \)
53: replace \(i \)
(proven!)

theorem remSubset, \(s \subseteq s1 \)
imp \((s \rem x) \subseteq s1; \)
remSubset uses remEqv!

proof tree:
36: \(\text{remSubset} \)
invoke \(\text{subset} \ | \ \text{all} | \)
37: \(x' = x'' \)
41: \(\text{apply remEqv} \)
42: \(s' = s \)
and \(i = x'' \)
and \(x' = x \{ \text{search} \} \)
42: (proven!).

theorem SimpleSend # 3, \(\text{ReceivedSoFar} \subseteq \text{TotalToBeSent} \)
and \(\text{RemainingToBeSent} \subseteq \text{TotalToBeSent} \)
and \(\text{RemainingToBeSent} = \text{NewSetOfElemType} \)
and computes(pick(\text{RemainingToBeSent}, \text{NextToSend}), \)
result(\text{NextToSend2}))
and computes(send(\text{NextToSend2}, \text{ReceivedSoFar}), \)
result(\text{ReceivedSoFar3}))
imp \(\text{ReceivedSoFar3} \subseteq \text{TotalToBeSent} \)
and (\text{RemainingToBeSent rem \text{NextToSend2}} \subseteq \text{TotalToBeSent} \)
SimpleSend # 3 uses computespick\%, computessend\%, remSubset!, addSubset!, and inSubset!.

proof tree:
18: SimpleSend # 3
 apply computespick
19: 13 apply computessend
20: 14 put \(s = \text{RemainingToBeSent} \)
 and \(\text{it} = \text{NextToSend} \)
 and \(\text{it}1 = \text{NextToSend2} \)
 and \(\text{it}' = \text{NextToSend2} \)
 and \(\text{rec} = \text{ReceivedSoFar} \)
 and \(\text{rec1} = \text{ReceivedSoFar3} \)
22: 15 apply remSubset
23: 17 put \(s = \text{RemainingToBeSent} \)
 and \(s1 = \text{TotalToBeSent} \)
 and \(x = \text{NextToSend2} \)
24: 16 suppose \(\text{ReceivedSoFar3} = \text{ReceivedSoFar add NextToSend2} \)
25:
yes:
19 replace \(\text{ReceivedSoFar3} \)
26: 21 apply addSubset
27: 23 put \(s = \text{ReceivedSoFar} \)
 and \(s1 = \text{TotalToBeSent} \)
 and \(x = \text{NextToSend2} \)
28: 24 apply inSubset
29: 26 put \(s = \text{RemainingToBeSent} \)
 and \(x = \text{NextToSend2} \)
 and \(s1 = \text{TotalToBeSent} \) (search)
29: (proven!)
30: no:{SimpleSend # 3}
20 replace \(\text{ReceivedSoFar3} \)
 (proven!)

theorem SimpleSend # 2, \(\text{NewSetOfElemType subset TotalToBeSent} \)
and \(\text{TotalToBeSent subset TotalToBeSent} \);

proof tree:
15: SimpleSend # 2
15 invoke subset | all |
15: (proven!)

theorem SimpleSend # 1, \(\text{ReceivedSoFar2 subset TotalToBeSent} \).
and RemainingToBeSent_1 subset TotalToBeSent
and RemainingToBeSent_1 = NewSetOfElemType
imp ReceivedSoFar_2 subset TotalToBeSent;

proof tree:
11: ! (proven!)

theorem computes(SimpleSend, computes(SimpleSend(TotalToBeSent, ReceivedSoFar),
result(ReceivedSoFar_1))
imp ReceivedSoFar_1 subset TotalToBeSent;

theorem SimpleSend, verification(SimpleSend);
SimpleSend uses SimpleSend # 1!, SimpleSend # 2!, SimpleSend # 3!, and computesSimpleSend%.

proof tree:
8: ! SimpleSend

11: ! VC1:
 Immediate
15: ! VC2:
 SimpleSend # 2
 invoke subset | all |
15: (proven!)
18: ! VC3:
 SimpleSend # 3
 apply computespick
19: 13 apply computesend
20: 14 put s = RemainingToBeSent
 and it = NextToSend
 and it_1 = NextToSend_2
 and it' = NextToSend_2
 and rec = ReceivedSoFar
 and rec_1 = ReceivedSoFar_3
22: 15 apply remSubset
23: 17 put s = RemainingToBeSent
 and s_1 = TotalToBeSent
 and x = NextToSend_2
24: 18 suppose ReceivedSoFar_3
 = ReceivedSoFar add NextToSend_2
25: yes:
19 replace ReceivedSoFar_3
26: 21 apply addSubset
27: 23 put .s = ReceivedSoFar
and \(s_1 = \text{TotalToBeSent} \)
and \(x = \text{NextToSend2} \)

28: 24 apply \text{inSubset}
29: 26 put \(s = \text{RemainingToBeSent} \)
and \(x = \text{NextToSend2} \)
and \(s_1 = \text{TotalToBeSent} \) \{search\}
29: (proven!)
32: no: \{\text{SimpleSend, VC3:} \}
20 replace \text{ReceivedSoFar3} \)
(proven!)
% computes: \{\text{SimpleSend}\}
computesSimpleSend

\[\text{theorem computespick, } s \vdash \text{NewSetOfElemType} \]
and computes(pick(s, it),
result(it1))
imp it1 in s;

\[\text{theorem pick \# 1, } s \vdash \text{NewSetOfElemType} \]
imp it in s;

\[\text{theorem pick, verification(pick);} \]
pick uses pick \# 1? and computespick%.

proof tree:
9| pick
? VC1:
pick \# 1
%
computes:
computespick

\[\text{theorem computessend, } \text{computes(send(it, rec),} \]
result(rec1))
imp rec1 = rec add it
or rec1 = rec;

theorem send # 1, rec = rec add it
or rec = rec;

theorem send, verification(send);
send uses send # 1? and computessend%.

proof tree:
9:| send
? VC1:
 send # 1
%
computes:
 computessend

71 U: print status SimpleSend;
SimpleSend is proved.
72 U: quit;
Type CONTINUE to return to AFFIRM.
4. Proof of Rotate Twice

This property of the Rotate family is considerably more difficult to prove than many others, due to a tricky subsidiary deduction. This transcript is also supposed to illustrate a realistic proof attempt, instead of a polished proof. The transcript shows the proof of one branch of the proof, including many false starts. Notice the use of the profile entries. Unlike the other proofs in this volume, Rotate Twice shows a number of profile entries (including automechanisms such as AutoNext) turned on.

Transcript file (GERHART)AFFIRMTRANSCRIPT.8-NOV-80.2 is open in the AFFIRM system (AFFIRM)AFFIRM.EXE.120

1 U:

In this transcript, we will be proving a difficult property of a Rotate operation on sequences. The basis data type for sequences doesn't matter, so we will use a readily available one, for Integer.

2 U: needs type sequenceofflnteger;

compiled for AFFIRM on 7-Nov-80 12:03:27
file created for AFFIRM on 7-Nov-80 12:03:18
SEQUENCEOFINTEGERCOMS
(GERHART)SEQUENCEOFINTEGER.COM.1

3 U:

the needs command found the type in my directory (normally it would be retrieved from <PVLIBRARY>). Here it is:

4 U: print type sequenceofflnteger;

(sequenceofflnteger = > SequenceOfInteger)

The $ (Escape) denotes the rest of the type name.

type SequenceOfInteger;

declare dummy, ss, s, s1, s2: SequenceOfInteger;

declare k, ii, i, ii, i2, j: Integer;

interfaces NewSequenceOfInteger, s apr i, i apl s, seq(i), s1 join s2,
LessFirst(s), LessLast(s): SequenceOfInteger;
infix join, apl, apr;

interfaces isNew(s), FirstInduction(s), Induction(s), NormalForm(s),
 i in s: Boolean;

infix in;

interfaces Length(s), First(s), Last(s): Integer;

axioms
 dummy = dummy = = TRUE,
 NewSequenceOfInteger = s apr i = = FALSE,
 s apr i = NewSequenceOfInteger = = FALSE,
 s apr i = s1 apr i1 = = ((s = s1) and (i = i1));

axioms
 i apl NewSequenceOfInteger = = NewSequenceOfInteger apr i,
 i apl (s apr i1) = = (i apl s) apr i1;

axiom
 seq(i) = = NewSequenceOfInteger apr i;

axioms
 NewSequenceOfInteger join s = = s,
 (s apr i) join s1 = = s join (i apl s1);

axiom
 LessFirst(s apr i)
 = = if s = NewSequenceOfInteger
 then NewSequenceOfInteger
 else LessFirst(s apr i);

axiom
 LessLast(s apr i) = = s;

axiom
 isNew(s) = = (s = NewSequenceOfInteger);

axioms
 i in NewSequenceOfInteger = = FALSE,
 i in (s apr i1) = = (i in s or (i = i1));

axioms
 Length(NewSequenceOfInteger) = = 0,
 Length(s apr i) = = Length(s) + 1;

axiom
 First(s apr i) = = if s = NewSequenceOfInteger
 then i
 else First(s);

axiom
 Last(s apr i) = = i;

rulelemmas
 NewSequenceOfInteger = i apl s = = FALSE,
\[
i \text{apl } s = \text{NewSequenceOfInteger } = \text{ FALSE;}
\]

rulelemmas

\[
\text{s join (s1 apr i) } = (\text{s join s1) apr i,}
\]

\[
\text{s join NewSequenceOfInteger } = s,
\]

\[
(i \text{ apl s1}) \text{ join s2 } = i \text{ apl } (s1 \text{ join s2),}
\]

\[
(s \text{ join } (i \text{ apl s1})) \text{ join s2}
\]

\[
= \text{s join } (i \text{ apl } (s1 \text{ join s2)),}
\]

\[
\text{s join (s1 join s2) } = (s \text{ join s1}) \text{ join s2;}
\]

rulelemma

\[
\text{LessFirst}(i \text{ apl s) } = s;
\]

rulelemma

\[
\text{LessLast}(i \text{ apl s) } =
\]

\[
\text{if } s = \text{NewSequenceOfInteger}
\]

\[
\text{then NewSequenceOfInteger}
\]

\[
\text{else i apl LessLast(s);}
\]

rulelemma

\[
i \text{ in } (i1 \text{ apl s) } = (i \text{ in s or } (i = i1));
\]

rulelemma

\[
\text{First}(i \text{ apl s) } = i;
\]

rulelemma

\[
\text{Last}(i \text{ apl s) } = \text{if } s = \text{NewSequenceOfInteger}
\]

\[
\text{then } i
\]

\[
\text{else Last(s);}
\]

schemas

\[
\text{FirstInduction(s) } = \text{ cases(Prop(NewSequenceOfInteger), all ss, ii}
\]

\[
\text{(IH(ss)
}\]

\[
\text{imp Prop(i apl ss)),}
\]

\[
\text{Induction(s) } = \text{ cases(Prop(NewSequenceOfInteger), all ss, ii}
\]

\[
\text{(IH(ss)
}\]

\[
\text{imp Prop(ss apr ii)),}
\]

\[
\text{NormalForm(s) } = \text{ cases(Prop(NewSequenceOfInteger), all ss, ii (Prop(ss
}\]

\[
\text{apr ii))};
\]

end \{ \text{SequenceOfInteger} \};

5 U:

Since this is a demo transcript, somebody may be interested in the profile.

6 U: profile ;
Do you want to Modify, See, or Read your profile? see [confirm]

your terminal characteristics:
 TerminalLineWidth is 92

the printout modes:
 LessOutputDesired is On
 AverageNameLength is 5
 AxiomGrouping is On
 LemmaGrouping is On
 InterfaceGrouping is On
 DefineGrouping is On
 NeedsGrouping is On
 NewPP is On
 SchemaGrouping is On
 UseORinProps is On
 DummyVarName is dummy
 ErrorTokensOutput is 15
 ReportFlag is Off
 RuleLHSPercentage is 49
 ShowNormint is Off
 ShowRuleSimplification is On
 ShowRules is Off
 TypesInInterfaces is Variables

the event history flags:
 HistoryWindowSize is 6

the executive flags:
 TextEditor is XED
 Timer is Off
 CompileOption is Redefine
 UsingTed is Off

the information about files:
 FreezeFileName is Frozen-AFFIRM
 LoadNeededTypes is On

the spelling correction flags:
 DontAskJustTake is 40

the theorem prover flags:
AutoResume is Off
ListAppliedExprs is On
AutoCases is On

the Interlisp mode flags:
GarbageCollectionMessage is Off
GarbageCollectionPages is 40
BreakAccess is Off

the transcript information:
 AnnotatingTranscript is On
 TranscriptFileName is AFFIRMTRANSCRIPT

the profile information:
 SaveOnlyChangedEntries is On
 UserProfileFileName is --AFFIRMUserProfile--
 EnquireAfterFreeze is Off
 EnquireInitially is Off
 ReadAnotherProfileFile is On

the Knuth-Bendix flags:
 CautiousCompletion is Off
 KBAxiomOrder is Inverse

the automatically-applied event flags:
 AutoAnnotate is On
 AutoCompile is Off
 AutoFix is Off
 AutoFreeze is Ask
 AutoGenvcs is Ask
 AutoInfix is Off
 AutoInvokeH is Off
 AutoNext is On
 AutoNormint is On
 AutoPrintProof is Ask
 AutoPrintProofTheorems is Ask
 AutoReplace is Off
 AutoSave is Off
 AutoSearch is Off
 AutoSufficient is Off
 AutoUndo is Off

NOW do you want to modify the current profile? no [confirm]
Do you wish to save this profile? no [confirm]

7 U:

Actually, I do want to modify the terminal line width to display better. The easy way is:

8 U: profile terminalline$ = $ = 88;

" = "?
TerminalLineWidth: 88
 = EVALQT

'. Unexpected PROFILEENTRYNAME found in routine NIL.
(undefined routine!)
Parameters: (none)
EVALQT can't be set to 88.
New value:
(...) profile aborted: effects undone)

9 U:

Well, that brought up AFFIRM's breakfast. I typed a bad character. Trying again.

10 U: profile terminallinewidth = 88;

TerminalLineWidth: 88

11 U:

Now I need an environment.

12 U: adopt sequenceofinte$;

(sequenceofinte$ = SequenceOfInteger)
New environment:
dummy, ss, s, s1, s2: SequenceOfInteger
k, ii, i, i1, i2, j: Integer

13 U:

The concept of interest is sequence rotation, both ways.

14 U: define Rotate(s,i) = = if isNew(s) or i = 0 then s

(... command input aborted)

15 U: define Rotate(s,i) = = if isNew(s) then s else if i = 0 then s else if i<0 then Rotate(LessFirst(s) apr First(s), i + 1) else Rotate(Last(s) apl LessLast(s), i-1);
Please provide an interface declaration for Rotate (then type \texttt{ok}; to continue).

\texttt{interface Rotate(s,i):SequenceOfInteger;}

\texttt{ok;}

define Rotate(s, i)
 if (s = NewSequenceOfInteger) or (i = 0)
 then s
 else if i < D
 then Rotate(LessFirst(s) apr First(s), i + 1)
 else Rotate(Last(s) apr LessLast(s), i - 1);

\texttt{Note the change in form, adding an 'or' for the first two conditionals.}

\texttt{The property of interest is:}

\texttt{try RTwice, Rotate(Rotate(s,i),j) = Rotate(s,i+j);}

Making node \texttt{RTwice} a theorem.
\texttt{RTwice} is untried.

\texttt{all s, i, j (Rotate(Rotate(s, i), j) = Rotate(s, i + j))}

\texttt{The usual approach is to dive into an induction on one of the integer parameters. Let's try \texttt{i}.}

\texttt{employ Induction(i);}

\texttt{Case 0: Prop(0) remains to be shown.}
\texttt{Case DIFFERENCE: all ii ((ii < 0) and IH(ii) imp Prop(ii-1)) remains to be shown.}
\texttt{Case PLUS: all ii ((0 < ii) and IH(ii) imp Prop(ii + 1)) remains to be shown.}
\texttt{(0:)}
\texttt{all s, j (Rotate(Rotate(s, 0), j) = Rotate(s, j))}

\texttt{invoke Rotate[2];}

\texttt{TRUE}
\texttt{Going to leaf DIFFERENCE::}

\texttt{all ii', s, j}
((ii' <= 0) and IH(ii', 1 {RTwice}))
imp Rotate(Rotate(s, ii'-1), j)
= Rotate(s, ii' + j - 1))

24 U: invoke Rotate[2];

all ii', s, j
((ii' <= 0) and IH(ii', 1 {RTwice}))
imp if s = NewSequenceOfInteger
then Rotate(s, j) = Rotate(s, ii' + j - 1)
else Rotate(Rotate(LessFirst(s) apr First(s), ii'), j)
= Rotate(s, ii' + j - 1))

25 U: invoke Rotate[2,3];

all ii', s, j
((ii' <= 0) and IH(ii', 1 {RTwice}))
imp if s = NewSequenceOfInteger
then Rotate(s, j) = s
else if Rotate(LessFirst(s) apr First(s), ii') = NewSequenceOfInteger or j = 0
then Rotate(LessFirst(s) apr First(s), ii')
= Rotate(s, ii' + j - 1)
else if j<0
then Rotate(LessFirst(Rotate(LessFirst(s) apr First(s)
ii'))
apr First(Rotate(LessFirst(s) apr First(s),
ii')),

j + 1)
= Rotate(s, ii' + j - 1)
else Rotate(Last(Rotate(LessFirst(s) apr First(s),
ii'))
apr LessLast(Rotate(LessFirst(s) apr First(s)
ii'))),

j-1)
= Rotate(s, ii' + j - 1))

26 U: Did that wrong, wanted 1,2 Rotates.

27 U: undo;

invoke undone.
28 U: invoke Rotate[1,2];

\[
\begin{align*}
\forall ii', s, j \\
(& (ii' \leq 0) \text{ and } \text{IH}(ii', 1 \{\text{RTwice}\})) \\
\text{imp } & s = \text{NewSequenceOfInteger} \\
\text{or } & \text{Rotate(Rotate(LessFirst(s) apr First(s), ii'), j)} \\
& = \text{Rotate}(s, ii' + j - 1))
\end{align*}
\]

29 U: Time to use the induction.

30 U: invoke IH;

\[
\begin{align*}
\forall ii', s, j (\text{some } s', j') \\
(& ii' \leq 0 \\
& \text{and } \text{Rotate(Rotate(s', ii'), j') = Rotate(s', ii' + j')} \\
\text{imp } & s = \text{NewSequenceOfInteger} \\
\text{or } & \text{Rotate(Rotate(LessFirst(s) apr First(s), ii'), j)} \\
& = \text{Rotate}(s, ii' + j - 1))
\end{align*}
\]

31 U: put \(s' = \text{LessFirst}(s) \text{ apr First}(s) \) and \(j' = j \);

\[
\begin{align*}
\forall ii', s, j \\
(& ii' \leq 0 \\
& \text{and } \text{Rotate(Rotate(LessFirst(s) apr First(s), ii'), j)} \\
& = \text{Rotate}(\text{LessFirst}(s) \text{ apr First}(s), ii' + j) \\
\text{imp } & s = \text{NewSequenceOfInteger} \\
\text{or } & \text{Rotate(Rotate(LessFirst(s) apr First(s), ii'), j)} \\
& = \text{Rotate}(s, ii' + j - 1))
\end{align*}
\]

32 U: replace;

\[
\begin{align*}
\forall ii', s, j \\
(& ii' \leq 0 \\
& \text{and } \text{Rotate(Rotate(LessFirst(s) apr First(s), ii'), j)} \\
& = \text{Rotate}(\text{LessFirst}(s) \text{ apr First}(s), ii' + j) \\
\text{imp } & s = \text{NewSequenceOfInteger} \\
\text{or } & \text{Rotate(Rotate(LessFirst(s) apr First(s), ii'), j)} \\
& = \text{Rotate}(s, ii' + j - 1))
\end{align*}
\]

33 U:
Now it's down to making the last Rotates match.

34 U: invoke Rotate[-1];

all ii', s, j
 (ii' <= 0
 and Rotate(Rotate(LessFirst(s) apr First(s), ii'), j)
 = Rotate(LessFirst(s) apr First(s), i'' + j)
)
 imp s = NewSequenceOfInteger
 or if ii' + j - 1 = 0
 then Rotate(LessFirst(s) apr First(s), ii' + j)
 = s
 else ii' + j < = 0
 or Rotate(LessFirst(s) apr First(s), ii' + j)
 = Rotate(Last(s) apl LessLast(s), ii' + j - 2)

35 U: Let's delete the used equality. This is not recommended style, but we have never implemented the corresponding non-editor command.

36 U: @;

tty:
1+52 (delete 3)
ok
Please summarize what you did, end with ";
deleted hypotheses;

all ii', s, j
 (ii' <= 0
 imp s = NewSequenceOfInteger
 or if ii' + j - 1 = 0
 then Rotate(LessFirst(s) apr First(s), ii' + j)
 = s
 else ii' + j < = 0
 or Rotate(LessFirst(s) apr First(s), ii' + j)
 = Rotate(Last(s) apl LessLast(s), ii' + j - 2)

37 U: suppose isNew(s);
(yes)
TRUE
Going to leaf no:

all ii', s, j
 ((s ∼ NewSequenceOfInteger) and (ii' < = 0)
 imp if ii' + j · 1 = 0
 then Rotate(LessFirst(s) apr First(s),
 ii' + j)
 = s
 else ii' + j ≤ 0
 or Rotate(\begin{align*}
 & \text{LessFirst(s) apr First(s),} \\
 & \text{ii' + j}
 \end{align*})
 = Rotate(\begin{align*}
 & \text{Last(s) apl LessLast(s),} \\
 & \text{ii' + j - 2})

I want to break up the cases and re-arrange the expression.

39 U: split;

(first:)
all ii', s, j
 ((s ∼ NewSequenceOfInteger) and (ii' < = 0)
 and ii' + j · 1 = 0
 imp Rotate(\begin{align*}
 & \text{LessFirst(s) apr First(s),} \\
 & \text{ii' + j}
 \end{align*})
 = s)

40 U:

A rearrangement of the Integer expression is needed. This requires explicitly applying an "Integer Fact" lemma, as Affirm's Integer Simplifier doesn't handle this case.

41 U: apply AddSwitch, i+j=k eqv (i=k·j and j=k·i);

some i, k, j' (i+j' = k
 eqv (i = k·j') and (j' = k·i))

42 U: put i=ii'+j and j'=·1 and k=0;

all ii', s, j
 (ii' + j = 1
 and ·1 = ·(ii' + j)
 and ii' + j · 1 = 0
 and s ∼ NewSequenceOfInteger
\[
\begin{align*}
\text{and } ii' & \leq 0 \\
\text{imp } \text{Rotate}(\text{LessFirst}(s) \text{ apr First}(s), ii' + j) \\
& = s)
\end{align*}
\]

43 U: replace;

all \(ii' , s, j \)
(\((ii' + j = 1) \) and \(s = \text{NewSequenceOfInteger} \) \\
and \(ii' \leq 0 \)
imp Rotate(LessFirst(s) apr First(s), 1) = s)

44 U: invoke Rotate;

all \(ii' , s, j \)
(\((ii' + j = 1) \) and \(s = \text{NewSequenceOfInteger} \) \\
and \(ii' \leq 0 \)
imp Rotate(First(s) apl LessFirst(s), 0) = s)

45 U: invoke Rotate;

all \(ii' , s, j \)
(\((ii' + j = 1) \) and \(s = \text{NewSequenceOfInteger} \) \\
and \(ii' \leq 0 \)
imp First(s) apl LessFirst(s) = s)

46 U:

\text{And that's a normal form property.}

47 U: employ NormalForm(s);

Case \text{NewSequenceOfInteger}: \text{Prop(}\text{NewSequenceOfInteger}) \text{ proven.}
Case \text{apr}: all \(ss, ii \) (\text{Prop(}ss \text{ apr } ii)) \text{ remains to be shown.}
(apr)
all \(ss', ii', ii, j \)
(\((ii + j = 1) \) and \(ii \leq 0 \)
imp \((ss' = \text{NewSequenceOfInteger}) \) or \((\text{First}(ss') \text{ apl LessFirst}(ss') = ss')\))

48 U:

\text{Whoops, it requires Induction, so it should be a lemma.}

49 U: undo;

employ undone.
50 U: apply FirstSplit, \(\sim \text{isNew}(s) \) imp First(s) apl \(\text{LessFirst}(s) = s \);

some \(s' \) ((\(s' = \text{NewSequenceOfInteger} \)) or (First(s') apl \(\text{LessFirst}(s') = s' \))

51 U: search;

1/1: \(s' = s \)

Proved by chaining and narrowing using the substitution

\(s' = s \) TRUE

Going to leaf second:

all \(ii', s, j \)

((s = NewSequenceOfInteger) and (\(ii' < = 0 \))

imp \(ii' + j \cdot 1 = 0 \)

or \(ii' + j < = 0 \)

or Rotate(\(\text{LessFirst}(s) \) apr First(s), \(ii' + j \))

= Rotate(Last(s) apl \(\text{LessLast}(s) \),

\(ii' + j \cdot 2 \))

52 U: The integer terms show that \(ii' + j \geq 2 \) in the Rotate equality, which will allow invoking it through to match. First, let's draw out the fact.

53 U: suppose \(ii' + j \geq 2 \);

(yes:)

all \(ii', s, j \)

((2 < ii' + j) and (s = NewSequenceOfInteger)

and \(ii' < = 0 \)

imp \(ii' + j \cdot 1 = 0 \)

or Rotate(\(\text{LessFirst}(s) \) apr First(s), \(ii' + j \))

= Rotate(Last(s) apl \(\text{LessLast}(s) \),

\(ii' + j \cdot 2 \))

54 U: invoke Rotate;

all \(ii', s, j \)

((2 < ii' + j) and (s = NewSequenceOfInteger)

and \(ii' < = 0 \)

imp \(ii' + j \cdot 1 = 0 \)

or Rotate(First(s) apl \(\text{LessFirst}(s) \),
\[\text{ii'} + j \cdot 1 \]
\[= \text{Rotate} (\text{Last}(s) \text{ apl } \text{LessLast}(s), \]
\[\text{ii'} + j \cdot 2) \]

55 U: invoke \text{Rotate};

all ii', s, j
(\(2 \leq ii' + j\) and \(s \neq \text{NewSequenceOfInteger}\)
and \(ii' \leq 0\)
imp \(ii' + j \cdot 1 = 0\)
or if \text{LessFirst}(s) = \text{NewSequenceOfInteger}
then \text{Rotate}(\text{NewSequenceOfInteger apr First}(s),
\text{ii'} + j \cdot 2)
\[= \text{Rotate}(\text{Last}(s) \text{ apl } \text{LessLast}(s),
\text{ii'} + j \cdot 2) \]
else \text{Rotate}(\text{Last}(\text{LessFirst}(s))
\text{ apl First}(s) \text{ apl LessLast}(\text{LessFirst}(s)),
\text{ii'} + j \cdot 2)
\[= \text{Rotate}(\text{Last}(s) \text{ apl } \text{LessLast}(s),
\text{ii'} + j \cdot 2) \]

56 U:

All these selections should simplify with NormalForm.

57 U: employ \text{NormalForm}(s);

Case \text{NewSequenceOfInteger}: \text{Prop(NewSequenceOfInteger)} proven.
Case \text{apr}: all ss, ii \ (\text{Prop(ss apr ii)}) remains to be shown.
(apr:\)
all ss', ii', ii, j
(\(2 \leq ii + j\) and \(ii \leq 0\)
imp \(ii + j \cdot 1 = 0\)
or if \(ss' = \text{NewSequenceOfInteger}\)
then \text{Rotate}(\text{NewSequenceOfInteger apr ii'},
\text{ii'} + j \cdot 2)
\[= \text{Rotate}(ii' \text{ apl } ss', ii + j \cdot 2) \]
else \text{Rotate}(ii' \text{ apl } (\text{First}(ss') \text{ apl LessFirst}(ss'))),
\text{ii'} + j \cdot 2)
\[= \text{Rotate}(ii' \text{ apl } ss', ii + j \cdot 2) \]

58 U: replace;

all ss', ii', ii, j
(\(2 \leq ii + j\) and \(ii \leq 0\)
imp \((ii + j \cdot 1 = 0)\) or \((ss' = \text{NewSequenceOfInteger})\)
or \text{Rotate}(ii' \text{ apl } (\text{First}(ss') \text{ apl LessFirst}(ss'))),
\[ii + j \cdot 2 \]
\[= \text{Rotate}(ii' \oplus ss', ii + j \cdot 2) \]

59 U: apply FirstSplit;

some s ((s = \text{NewSequenceOfInteger}) or (First(s) \oplus \text{LessFirst}(s) = s))

60 U: put \(s = ss' \);

all ss', ii', ii, j
\[
(ss' = \text{NewSequenceOfInteger} \\
\text{and First}(ss') \oplus \text{LessFirst}(ss') = ss' \\
\text{and } 2 \leq ii + j \\
\text{and } ii \leq 0 \\
\text{imp } ii + j - 1 = 0 \\
or \text{Rotate}(ii' \oplus (\text{First}(ss') \oplus \text{LessFirst}(ss'))), \\
ii + j \cdot 2 \\
= \text{Rotate}(ii' \oplus ss', ii + j \cdot 2)
\]

61 U: replace;

TRUE
Going to leaf no.:

all ii', s, j
\[
((ii' + j < 2) \text{ and } (s = \text{NewSequenceOfInteger}) \\
\text{and } ii' \leq 0 \\
\text{imp } ii' + j \cdot 1 = 0 \\
or ii' + j \leq 0 \\
or \text{Rotate}(\text{LessFirst}(s) \oplus \text{First}(s), ii' + j) \\
= \text{Rotate}(\text{Last}(s) \oplus \text{LessLast}(s), \\
ii' + j \cdot 2))
\]

62 U: apply AddSwitch;

some i, k, j' (i + j' = k \\
eqv (i = k-j') \text{ and } (j' = k-i))

63 U: put \(i = ii' + j \) and \(j' = -1 \) and \(k = 0 \);

all ii', s, j
\[
(\text{if } ii' + j = 1 \\
\text{then } -1 = -(ii' + j) \\
\text{and } ii' + j \cdot 1 = 0
\]
and ii' + j < 2
 and s ~ = NewSequenceOfInteger
 and ii' < 0
 imp Rotate(LessFirst(s) apr First(s),
 ii' + j)
 = Rotate(Last(s) apr LessLast(s),
 ii' + j - 2)
else ii' + j - 1 ~ = 0
 and ii' + j < 2
 and s ~ = NewSequenceOfInteger
 and ii' < 0
 imp ii' + j <= 0
 or Rotate(LessFirst(s) apr First(s),
 ii' + j)
 = Rotate(Last(s) apr LessLast(s),
 ii' + j - 2))

64 U: replace;

TRUE
Going to leaf PLUS:

all ii', s, j
 (0 <= ii' and IH(ii', 1 {RTwice}))
 imp Rotate(Rotate(s, ii' + 1), j)
 = Rotate(s, ii' + j + 1))

65 U:

 Now we have to do the same thing on this side.

66 U: print proof;

theorem RTwice, Rotate(Rotate(s, i), j) = Rotate(s, i + j);
RTwice uses FirstSplit? and AddSwitch?.

proof tree:
22: | RTwice
 employ Induction(i)
23: | 0: 2 invoke Rotate | 2 |
23: (proven!)
24: | DIFFERENCE:
25: 3 invoke Rotate | 2 |
24: | 6 cases
28: | 7 invoke Rotate | 1 , 2 |
30: | 8 invoke IH
31: | 9 put (s' = LessFirst(s) apr First(s)) and (i' = j)
32: | 10 replace
34: 11 invoke Rotate | - 1 |
34: 12 cases
36: 13 @ (deleted hypotheses)
37: 14 suppose isNew(s)
37: yes:
 Immediate
39: no: 16 split
41: first:
 17 apply AddSwitch
42: 20 put i = ii' + j
 and (j' = -1) and (k = 0)
43: 21 replace
44: 22 invoke Rotate
45: 23 invoke Rotate
50: 24 apply FirstSplit
51: 26 put s' = s {search}
51: (proven!)
53: second: {RTwice, DIFFERENCE; no:}
18 suppose ii' + j ≥ 2
54: yes:
28 invoke Rotate
55: 30 invoke Rotate
55: 31 cases
57: 32 employ NormalForm(s)
 NewSequenceOfInteger:
 Immediate
57: apr:
33 cases
58: 34 replace
59: 35 apply FirstSplit
60: 36 put s = ss'
61: 37 replace
 (proven!)
62: no: {RTwice, DIFFERENCE; no; second:}
29 apply AddSwitch
63: 38 put i = ii' + j
 and (j' = -1) and (k = 0)
64: 39 replace
 (proven!)
?-→ PLUS: {RTwice}
4

theorem FirstSplit, ¬isNew(s) imp First(s) apl LessFirst(s) = s;

theorem AddSwitch, i + j = k
 eqv (i = k-j) and (j = k-i);
67 U: assume Addswitch;

(Addswitch =⇒ AddSwitch)

68 U: try firstsplit;

(firstsplit =⇒ FirstSplit)
FirstSplit is untried.

all s ((s = NewSequenceOfInteger) or (First(s) api LessFirst(s) = s))

69 U: employ Induction(s);

Case NewSequenceOfInteger: Prop(NewSequenceOfInteger) proven.
Case apr: all ss, ii (IH(ss) imp Prop(ss apr ii)) remains to be shown.
(apr):
all ss', ii' (IH(ss', 25 {FirstSplit})
 imp (ss' = NewSequenceOfInteger) or (First(ss') api LessFirst(ss') = ss')
)

70 U: invoke IH;

TRUE
FirstSplit proved.
Automatically print the proof of FirstSplit? no [confirm]
Appendix I
Types Used in Proofs

1.1. SetofElemType

type SetofElemType;

needs type ElemType;

declare reflexive, s, s1, s2, ss: SetofElemType;
declare ii, i, i1, i2, x: ElemType;

interfaces NewSetofElemType, s add x, s rem i, s diff s1, s int s1, s union s1:
 SetofElemType;

infix union, diff, int, rem, add;

interfaces i in s, isNewSetofElemType(s), s subset s1, Induction(s), NormalForm(s):
 Boolean;

infix subset, in;

axioms reflexive = reflexive = = TRUE,
 NewSetofElemType = s add i = = FALSE,
 s add i = NewSetofElemType = = FALSE;

axioms NewSetofElemType rem i = = NewSetofElemType,
 (s add x) rem i
 = = if x = i
 then s rem i
 else (s rem i) add x;

axioms NewSetofElemType diff s = = NewSetofElemType,
 (s add x) diff s1
 = = if x in s1
 then s diff s1
 else (s diff s1) add x;

axioms NewSetofElemType int s1 = = NewSetofElemType,
 (s add x) int s1
 = = if x in s1
 then (s int s1) add x
 else s int s1;
axioms NewSetOfElemType union s1 = = s1,
 (s add x) union s1 = = (s union s1) add x;

axioms x in NewSetOfElemType = = FALSE,
 i in (s add x) = = ((i = x) or i in s);

axiom isNewSetOfElemType(s) = = (s = NewSetOfElemType);

define s = s1 = = (s subset s1 and s1 subset s),

 s subset s1
 = = all x' (x' in s imp x' in s1);

schemas Induction(s)
 = = cases(Prop(NewSetOfElemType), all ss, ii (IH(ss)
 imp Prop(ss add ii))),

 NormalForm(s)
 = = cases(Prop(NewSetOfElemType), all ss, ii (Prop(ss add ii)));

end {SetOfElemType} ;
1.2. SequenceOfInteger

type SequenceOfInteger;

declare dummy, ss, s, s1, s2: SequenceOfInteger;
declare k, ii, i, i1, i2, j: Integer;

interfaces NewSequenceOfInteger, s apr i, i apl s, seq(i), s1 join s2, LessFirst(s),
 LessLast(s), dedup(s), reverse(s), Rotate(s, k), Initial(s, k),
 LessInitial(s, k), deletepth(s, k), seqrange(i, j), sequpto(i)
 : SequenceOfInteger;

infix join, apl, apr;

interfaces isNewSequenceOfInteger(s), s1 subseq s2, FirstInduction(s), Induction(s),
 NormalForm(s), i in s, nodups(s), disjoint(s1, s2): Boolean;

infix in, subseq;

interfaces Length(s), First(s), Last(s), pth(s, k): Integer;

axioms dummy = dummy = = TRUE,
 NewSequenceOfInteger = s apr i = = FALSE,
 s apr i = NewSequenceOfInteger = = FALSE,
 s apr i = s1 apr i1 = = ((s = s1) and (i = i1));

axioms i apl NewSequenceOfInteger = = NewSequenceOfInteger apr i,
 i apl (s apr i1) = = (i apl s) apr i1;

axiom seq(i) = = NewSequenceOfInteger apr i;

axioms NewSequenceOfInteger join s = = s,
 (s apr i) join s1 = = s join (i apl s1);

axiom LessFirst(s apr i)
 = = if s = NewSequenceOfInteger
 then NewSequenceOfInteger
 else LessFirst(s apr i);

axiom LessLast(s apr i) = = s;

axioms dedup(NewSequenceOfInteger) = = NewSequenceOfInteger,
dedup(s apr i)
 = = if i in s
 then dedup(s)
 else dedup(s) apr i;

axioms
 reverse(NewSequenceOfInteger) = = NewSequenceOfInteger,
 reverse(s apr i) = = i apl reverse(s);

axiom
 isNewSequenceOfInteger(s) = = (s = NewSequenceOfInteger);

axioms
 s1 subseq (s apr i)
 = = ((s1 = NewSequenceOfInteger) or s1 subseq s
 or LessLast(s1) subseq s and (Last(s1) = i)),
 s subseq NewSequenceOfInteger = = (s = NewSequenceOfInteger);

axioms
 i in NewSequenceOfInteger = = FALSE,
 i in (s apr i1) = = (i in s or (i = i1));

axioms
 nodups(s apr i) = = (nodups(s) and ~ (i in s)),
 nodups(NewSequenceOfInteger) = = TRUE;

axioms
 disjoint(NewSequenceOfInteger, s) = = TRUE,
 disjoint(s apr i, s1) = = (disjoint(s, s1) and ~ (i in s1));

axioms
 Length(NewSequenceOfInteger) = = 0,
 Length(s apr i) = = Length(s) + 1;

axiom
 First(s apr i) = = if s = NewSequenceOfInteger
 then i
 else First(s);

axiom
 Last(s apr i) = = i;

rulelemmas
 NewSequenceOfInteger = i apl s = = FALSE,
 i apl s = NewSequenceOfInteger = = FALSE;

rulelemmas
 s join (s1 apr i) = = (s join s1) apr i,
 s join NewSequenceOfInteger = = s,
 (i apl s1) join s2 = = i apl (s1 join s2),
 (s join (i apl s1)) join s2 = = s join (i apl (s1 join s2)),
 s join (s1 join s2) = = (s join s1) join s2;

rulelemma
 LessFirst(i apl s) = = s;

rulelemma
 LessLast(i apl s) = = if s = NewSequenceOfInteger
then NewSequenceOfInteger
else i apl LessLast(s);

rulelemma i in (i1 apl s) = = (i in s or (i = i1));

rulelemma nodups(i apl s) = = (nodups(s) and ~{i in s});

rulelemma First(i apl s) = = i;

rulelemma Last(i apl s) = = if s = NewSequenceOfInteger
then i
else Last(s);

define Rotate(s, k)
 = = if (s = NewSequenceOfInteger) or (k = 0)
 then s
 else Rotate(LessFirst(s) apr First(s), k-1),

Initial(s, k)
 = = if (s = NewSequenceOfInteger) or (k = 0)
 then NewSequenceOfInteger
 else First(s) apl Initial(LessFirst(s), k-1),

LessInitial(s, k)
 = = if (s = NewSequenceOfInteger) or (k = 0)
 then s
 else LessInitial(LessFirst(s), k-1),

deletepth(s, k)
 = = if k = 1
 then LessFirst(s)
 else First(s) apl deletepth(LessFirst(s), k-1),

seqrange(i, j)
 = = if j < i
 then NewSequenceOfInteger
 else seqrange(i, j-1) apr j,

pth(s, k)
 = = if k = 1
 then First(s)
 else pth(LessFirst(s), k-1),

sequpto(i) = = seqrange(1, i);

schemas FirstInduction(s)
 = = cases(Prop(NewSequenceOfInteger), all ss, ii (IH(ss)
 imp Prop(ii apl ss))),
Induction(s)
 = = cases(Prop(NewSequenceOfInteger), all ss, ii (IH(ss)
 imp Prop(ss apr ii)),)

NormalForm(s)
 = = cases(Prop(NewSequenceOfInteger), all ss, ii (Prop(ss apr ii)));

end (SequenceOfInteger) ;
References