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Preface 
The AFFIRM Annotated Transcripts volume illustrates a number of features of AFFIRM. Each 

transcript is prefaced with a short description of what the transcript deals with and other highlights. 

All of these transcripts are from the current system as of the writing of this volume. Some of these 

proofs are highly polished and many people contributed to them. 



1 . P roof of su bseq transitivity 
The main point of this proof, aside from its 'historical' significance and that it took us a week to 

find, is the reasoning involved in disjunctions. The axiomatic definition of subseq is 

s sub seq NewSequenceOflnteger == (s=NewSequenceOflnteger) 

s subseq (sl apr i) == (s=NewSequenceOflnteger 
or s subseq s1 
or Last(s)=; and LessLast(s) sub5eq 51) 

The creation of the axioms for subseq was s~imulated by John Ulrich's posing this problem to us 

during his visit to lSI. The first axioms we came up with were like 

NewSequenceOflnteger 'subseq s == TRUE 

(s apr i) sub5eq NewSequenceOflnteger -- FALSE 

(s apr i) sub seq (s1 apr il) == 
(i=il and s subseq sl or s apr i sub5eq s1) 

This formulation 'follows the way one would program subseq, chopping off end elements 

. s'uccessively and comparing them. The proof of subseq transitivity using these axioms was never 

accomplished because we could not find any way to use our usual Induction. (Moore accomplished' 

this same proof at SRI using a rather complicated ordering and their generalized induction 

~echanism.) With the change in axioms the following proof was easily found. Gerrard Terrine of IRIA 

pointed out to us that our second axioms have the seed of transitivity built into them. 

There are some lessons here. First, you have to decide whether to have many induction methods 

or just a few schemas. We have chosen the latter course, whereas Boyer and Moore extensively 

pursued the former. Second, these axioms are not programs. The variability of expressiveness in 

axioms beyond the usual recursion seems worth using. 

See Appendix I on page 56 for a listing of the type SequenceOflnteger. 
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Transcript file <RBATES)AFFIRMTRANSCRIPT.14-NOV-SO.7 

is open in the AFFIRM system <AFFIRM)A~FIRM.EXE.120 

1 U: 
We are increasing the linewidth so the transcript fills a printed page (the default value is 79). 

2 U: profile TerminalLine Width = 88; 

TerminalLineWidth: 88 

3 U: needs type SequenceOfInteger; 

compiled for AFFIRM on 7 -Aug-SO 12:38:59 
file created for AFFIRM on 7 -Aug-SO 11 :10:22 
SEQUENCEOFINTEGERCOMS 

(File created under Affirm 108) 
<PVLIBRARY>SEQUENCEOFINTEGER.COM.3 

4U: 
The needs command gives us the current SequenceojJnteger. The message about "(File created 
_ .. )" states that the loaded version of SequenceOjJnteger wasll't created in the current version of 
Ajfinn, but the version difference is irrelevant. The library version of SequenceOjJnteger will 
be different if you repeat this transcript. 

5 U: declare sl,s2,s3:SequenceOfInteger; 

s1, s2, s3: SequenceOflnteger 

6 U: try subseqTrans, sl subseq s2 and s2 subseq s3 imp sl subseq s3; 

Making node subseqTrans a theorem. 

subseqTrans is untried. 

all s1, s2, s3 (s1 subseq s2 and s2 subseq s3 imp s1 subseq s3) 

7U: 
It should be clear after studying the axioms that s3 is the most natural variable to ilJduct 017., 

since the axioms pen71ute the constructoTs through the second parameter position of subseq. 

8 u:employ Induction(s3); 

Case NewSequenceOflnteger: Prop(NewSequenceOflnteger) remains to be shown. 

Case apr: all ss, ii (IH(ss) imp Prop(ss apr ii» remains to be shown. 

(NewSequenceOflnteger:). 
all s1, s2 (s1 subseq s2 and (s2 = NewSequenceOflnteger) imp s1 = NewSequenceOflnteger) 



9 U: replace s2; 

TRUE 

10U: 

'1 U: next; 

We have proved the basis case (NewSequenceOjInteger) so offwe go to the induction step. We 
could have turned on AutoNext. a profile entry, so we wouldn't have 10 explicitly do the next 
command 

Going to leaf apr:. 

all ss', ii', s1, s2 
IH(ss',1 {subseqTrans}) and s1 subseq s2 

and (s2 = NewSequenceOflnteger) or s2 subseq ss' 
. or LessLast(s2) subseq ss' and (Last(s2) = ii') 

imp (s1 = NewSequenceOflnteger) or 51 subseq ss' 
or LessLast(s1} subseq ss' and (Last(s1) = ii'» 

12 U: suppose s2 = NewSequenceOfInteger ; 

(yes:) 
all ss', ii', s1, 52 
.( (s2 = NewSequenceOflnteger) and IH(ss', 1 {subseqTrans}) 

and s1 5ubseq s2 
imp (s1 = NewSequenceOflnteger) or s1 subseq ss' 

or LessLast(s1) subseq ss' and (Last(s1) = ii'» 

13U: 
We could have done a split instead, but sometimes it is harder to figure out what a split will do. 

14 U: print proof; 

theorem subseqTrans, s1 subseq s2 and s2 5ubseq s3 imp s1 subseq s3; 

proof tree: 
8:1 subseqTrans 

employ Induction(s3) 
9: NewSequenceOflnteger: 

2 replace s2 
(proven!) 

12: apr: 
3 suppose $2 = NewSequenceOflnteger 

?) yes: 
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4 
? no:5 

15 U: replace s2; 

TRUE 

. 16U: next; 

Going to leaf no:. 

all ss', ii', 51, 52 
(52 - = NewSequenceOflnteger) and IH(5S', 1 {subseqTrans}) 

and s1 subseq s2 
and 52 5ubseq ss' 

or LessLast(s2) subseq ss' and (Last(s2) = ii'} 
imp (s1 = NewSequenceOfinteger) or s1 subseq ss' 

or LessLast(s1} subseq ss' and (Last{s1) = ii'» 

17U: 
The other case of event 12: l1ot(s2 =NewSequenceOj1nteger}. 

18 U: suppose s2 subseq 55' ; 

. (yes:) 
all ss', ii', s1, s2 

s2 sub5eq ss' and (52 - = NewSequenceOflnteger) 
and IH(ss', 1 {subseqTrans}} 
and s1 subseq s2 

imp· (s1 = NewSequenceOflnteger) or s1 subseq ss' 
or LessLast(51) subseq S5' and (Last{s1) = ii'» 

19 U: inyoke IH ; 

Now we need the Induction Hypothesis to link s1, ss'. and s2 transitively. 

all S5', ii', s1, s2 (some s1', s2' 
( s2 sub5eq 5S' and (52 - = NewSequenceOflnteger) 

and s1' sub5eq s2' and 52' subseq S5' imp s1' subseq S5' 
and s1 subseq s2 

imp (s1 = NewSequenceOfinteger) or s1 subseq ss' 
or LessLast(51) subseq ss' and (Last{s') = ii'))) 

20U: 



21 U: search; 

After invoking the induction hypothesis we have to instantiate sl' and s2: the free ,'ariables of 
the prop we are inducting on. Let's see if~ canjind it 

1/13: (s2' = ss') and (51' = 52) 
2/13: 52' = 52 

1/3: 51' = 82 
2/3: 51' = s1 

Proved by chaining and narrowing 
u5ing the substitution 

(S2' = s2) and (51' = s1) 

TRUE 

22 U: next; 

Going to leaf no: . 

. 
all ss', ii', s1, s2 
( -{s2 subseq ss'} and (s2 - = NewSequenceOfinteger) 

and IH{ss', 1 {subseqTrans}} 

and s1 subseq s2 
and LessLast{s2} subseq ss' 
and Last(s2) = ii' 

imp (s1 = NewSequenceOflnteger) or s1 subseq ss' 
or LessLast(s1) subseq ss' and {Last(s1} = ii')} 

23U: 
The other case from event 18: not(s2 subseq ss,. The system doesl1't reali:ze that if s2 isn't 
NewSequeliceOjlnteger then s2= LessLast(s2) apr Last(s2), but by employing the 
NormalForm schema we will enumerate the cases that 52 can take on (NewSequenceOjlnleger 
or apr) thusjiring the axiomsJor subseq wilhrespect to 52. 

24 U: employ NormaIForm(s2) ; 

Case NewSequenceOflnteger: Prop(NewSequenceOflnteger} proven. 
Case apr: all ss, ii (Prop(ss apr ii» remains to be shown. 
(apr:) 
all ss', ii', SS, ii, s1 

-«ss' apr ii') subseq ss) and IH(ss, 1 {subseqTrans})· 
and 51 - = NewSequenceOflnteger 
and s1 subseq ss' 

or LessLast(s1) subseq ss' and (Last(s') = ii') 
and ss' subseq ss 
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and ii' = U 
imp s1 subseq ss _ 

or LessLast(s1) subseq ss and (Last(s1) = U» 

25 U: replace ii ; 

all ss' , ii', ss, ii, s1' 
-({ss' apr ii') subseq ss) and IH(ss, 1 {subseqTrans}) 

imp s1 = NewSequenceOflnteger 
or if s1 subseq ss' 

then ss' subseq ss and (ii' = ii) 
imp s1 subseq ss 

or LessLast(s1) subseq ss 
and Last{s1) = ii' 

else LessLast(s1) subseq ss' 
and Last(s1) = ii' 
and ss' subseq ss 
and ii' = ii 

imp s1 subseq ss or LessLast{s1) subseq ss) 

26 U: suppose sl subseq ss' ; 

(yes:) 
all ss', ii', ss, ii, s1 

, s1 5ubseq ss' and -«ss' apr ii') subseq ss) 
a~d .IH(ss, 1 {subseqTrans}) 
and s1 - = NewSequenceOflnteger 
and ss' subseq ss 
and ii' = ii 

imp 51 SUb5eq ss 
or LessLast(s1) subseq S5 and (Last(s1) = ii'» 

27 U: invoke IH ; 

all ss', ii', SS, ii, s1 {some s1 " s2 
( s1 subseq ss' and -«ss' apr ii') subseq ss) 

and s1' subseq s2 and s2 subseq ss imp s1' subseq ss 
and 51 ~ = NewSequenceOflnteger 
and ss' subseq ss 
and ii' = ii 

imp s1 subseq ss 
or LessLast(s1) subseq ss and (Last(s1) = ii'))) 

28 U: search; 

1/16: (s2 = 6S') and (s1' = 51) 



Proved by chaining and narrowing 
using the substitution 

(s2 = ss') and (s1' = s1) 

TRUE 

. 29U: next; 

Going to leaf no:. 

all ss', ii', ss, ii, s1 
-(s1 subseq ss') 

and -«ss' apr ii') subseq ss) 
and IH(ss, 1 {subseqTrans}) 
and s1 - = NewSequenceOflnteger 
and LessLast(s1) subseq ss' 
and Last(s1) = ii' 

·and ss' subseq S5 
and ii' = ii 

imp s1 subseq ss or LessLast(51 ) 5ubseq ss) 

3OU: 
The other case a/step 26 : not(sI subseq ss'). 

3~ U: im'oke IH ; 

all 5S', ii', ss, ii, 51 (some 51 " s2 
( -(s1 subseq ss') 

and -«S5' apr ii') sub5eq ss) 
and s1' 5ubseq s2 and s2 sub5eq ss imp 51' subseq ss 
and s1 - = NewSequenceOflnteger 
and LessLast(s1} subseq ss' 

and Last(s1) = ii' 
and ss' subseq ss 
and ii' = ii 

imp s1 subseq ss or LessLa5t(51 ) 5ubseq 55» 

32 U: search; 

1/17: {s2 = ss'}and{s1' = s1} 
2/17: (52 = 5S) and (51' = ss' apr ii') 
3/17: s2 = S5' apr ii' 
4/17: s1' = ss' apr ii' 

1/5: s2 = ss 
2/5: s2 = ss' apr ji' 

( 
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3/5: s2 = ss' 
4/5: s2 = s1 
5/5: s2 = LessLast{s1) 

5/17: (s2 = ss') and (s1' = LessLast(s1» 
Proved by chaining and narrowing 
using the substitution 

(s2 = 55') and (s1' = LessLast(51» 

TRUE 

5ubseqTrans proved. 

33U: 
We are all done with subseqTrans, let's review the proof. 

34 U: print proof; 

theorem subseqTrans, s1 subseq s2 and s2 subseq s3 imp s1 subseq s3; 

proof tree:. 
8:! subseqTrans 

. employ lnduction(s3) 
9: NewSequenceOflnteger: 

2 replace 52 
.. (proven!) 

12: apr: 
3 suppose s2 = NewSequenceOflnteger 

15: yes: 
4 replace s2 
(proven!) 

18: no:5 suppose s2 subseq ss' 
19: yes: 

6 invoke IH 
21: 8 put (52' = s2) .and (s1' = s1) {search} 
21: (proven!) 
24: no:7 employ NormaIForm{s2) 

NewSeq uenceOfl nteger: 
Immediate 

25: apr: 
10 replace ii 

26: 11 suppose s1 subseq ss' 
27: y~s: 

12 invoke IH 
28: 14 put (s2 = ss') and (s1' = s1) {search} 
28: (proven!) 
31: no:13 invoke IH 
32: 16 put s2 = ss' 

ar:d s1' = LessLast{s1) {search) 



32:·) (proven!) 

35 U: quit; 

Type CONTINUE to return to AFFIRM. 
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2. The Knuth-Bendix Algorithm on Group Theory 
Axioms 

This transcript shows the Knuth·Bendix algorithm gener~ting a long sequence of rules. You will 

note we start with 3 rules, the 3 axioms which define a group: 

axiom e· op x = x; 
axiom inv(x) op x = e; 
axiom (x op y) op Z = x op (y op z) 

ana 2nd up with the 3 rules above and 7 rule lemmas: 

inv(e) = e 
. inv(inv(y)) = y 

inv(y op y' ') = inv(y' ') op inv(y) 
. inv(y) op (y op z) = Z 

Z op e = z 
y op (inv(y) op z) = Z 
Y op inv(y) = e 

This process is not automatic. You will note in the middle of the transcript when the system is 

proposing a new rule we have to reverse its direction (see page 14). 

The rule lemmas could have been proven as theorems by induction using the first three axioms. 

The "induction" accomplished by Knuth·Bendix isdiscussed in [Musser 80]. 

Transcript file (RBATES)AFFIRMTRANSCRIPT.7·NOV·80.3 
is open in the AFFIRM system (AFFIRM)AFFIRM.EXE. 120 

1 U: print file (affirm)grp1.axioms ; 

(AFFIRM)GRP1.AXIOMS.3: 

type Grp1; 
. declare x,y,z:Grp1; 

interface e:Grp1 ; 
intei'face inv(x),op(x,y):Grp1; 
infix op; 
axiom (x = x) = TRUE; 
axiom e op x = x; 
axiom inv(x) op x = e; . 
axiom (x op Y) op z = x op (y op z); 



end; 

2U: read (affum>grpl.axioms ; 

(Reading AFFIRM commands from (AFFIRM)GRP1.AXIOMS.3} 
type Grp1 
reflexive: Grp1 

. New rule: 
reflexive = reflexive 

·)TRUE 
1/1. Affirmed. 
x, y, z: Grp1 
Rule simplifies to TRUE. Affirmed . 

. New rule: 
. eop x 
·)x 

1/1. Affirmed. 
New rule: 

inv(x) op x . 
··)e 

1/1 .. Affirmed. 
New rule: 

. (x op y) ap z 
-) x 0P (y op z) 

1/1.!!'! 
Frpm (x op y) op z = = x op (y op z) 

and. inv(x) op x = = e 
we obtain a new rule: 

inv(y) op (y op z) 
·)z 

.! 
2/2.! 
From inv(y) op (y op z) = = z 

and inv(y) op (y op z) = = z 

we obtain a new rule: 
inv(inv(y)) op z 

·)yopz 
!.!! 
From inv(y) op (y op z) = = z 
and (x op y) op z = = x op (y op z) 

we obtain a new rule: 

.! 

'inv(x op y') op (x op (y' op z» 
.} z 

From inv(y) op (y op z) = = z 

and inv(x) op x = = e 
we obtain a new rule: 

zope 
·)z 

11 



12 

.! 
From inv(y) op (y op z) = = z 

and e op x = = x 
we obtain a new rule: 

inv(e) op Z 

.) z 
3/6 .. !.!!.! 
From Z op e = = Z 

and inv(x) op x = = e 
we obtain a new rule: 

inv(e) 
.) e 

417.!.!. 
5/7 discarding rule 

inv(e) op z = z 

6/7.!.! 
From inv(inv(y» op Z = = y op Z 

and Z op e = = Z 

we obtain a new rule: 
inv(inv(y» 

.) y" 
. discarding rule 
inv(inv(y» op Z = Y op Z 

7/S.! 
From inv(inv(y» = = y 
and inv(y) op (y op z) = = Z 

we obtain a new rule: 
y op (inv(y) op z) 

.) Z 

.! 
From inv(inv(y» = = y 
and inv(x) op x = = e 
we obtain a new rule: 

y op inv(y) 
.) e 

.. ! 
S/1 D.!.!. .. !.! 
From y op inv(y) = :: e 
and (x op y) op Z :: = X op (y op z) 
we obtain a new rule: 

x op (y' op inv(x op y'» 
.) e 

!..! 
. 9/11.!.!.!.!!.!..! 

From y op (inv(y) op z) = = Z 

and (x op y) op Z = = ~ op (y op z) 



we abtain a new rule: 
x ap {y' op (inv{x op y') op z» 

,>z 
!.I.! 
10/12 .. .!!.!.!! 
From x op (y' op inv(x op Y'» = = e 
and yap (inv(y) op z) = = z 
we obtain a new rule: 

y' ap inv(inv(y} op y') 
.) Y 

Ll! 
From x cp (y' ap inv(x op y'» = = e 
and inv(y} ap (yap z) = = z 
we obtain a new rule: 

y' ap inv{y op y') 
.) inv(y) 

!.! 
Fram x op (y' op inv(x ap y'» = = e 
and (x op y) op Z = = x op (y op z) 
we obtain a new rule: 

x' PP (y op (y' op inv(x' op (yap y'»» 
·)e 

!!!.!. !I! 
11/15 .. .1 
From y' ap inv(y op y') ,,; ::: inv(y} . 
. and y'op inv(y ap y'} = = inv{y) 
we abtain a new rule: 

inv{y ap y#3) ap y 
.) inv{y#3) 

!. discarding rule 
x ap (y' ap inv(x ap y'» = e 

.!.! 
From y' ap inv{y op y') = = inv(y) 
and y ap (inv(y) op z) = =. z 
we obtain a new rule: 

inv{y ap inv{y"» 
:) y" ap inv(y) 

!.!.! 
From y' ap inv(y op y') = = inv{y) 
and inv(y) cp (y op z) = = z 
we obtain a possible new rule: 

inv(y") ap inv{y) = = inv(y op y") 

Ok?? 

one of: 
Yes 
Reverse it 

These are the user's options when Knuth-Be.ndix asks what to do wilh a possible new nile: 

Suppress it (put it,on the list "8adEquatians") 

13 
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Treat it as Equation .) TRUE 
Instead accept another equation from the terminal 

The reversal decision was based on the structure-reducing characteristic offinite tennination 

Ok? Reverse it [confirm] 
!.!!!. !.!! 
12/18. discarding rule 
y' 01' inv{y op y') = inv(y} 

.! !.!!.!!.!!.!.!.!..!. 
13/18 discarding rule 
inv{y op inv(y"}) = y" op inv{y) 

1411"8 discarding rule 
inv(y QP y # 3} op y = inv(y # 3) 

15/18 discarding rule 
y' op inv(inv(y) op y') = y 

1 6/1 8-dis~arding rule 
inv(x op y') op (x op (y' op z» = z 

17/18 discarding rule 
x op {yi op (inv(x op y') op z)} = z 

18/18 discarding rule 
x' op (y op (y' op inv(x' op (y op y'}))) = e 

Affirmed. 
Leaving Grp1; now editing Basis. 

3U: print type Grpl; 

type GrpJ; 

declare reflexive, x, y, Z, y', x', y # 3, yl!: Grp1 ; 

interfaces e, inv(x}, x op y: Grp1; 

. inflx . op; 

axiom reflexive = reflexive = = TRUE; 

axioms e op x = = x, 
inv(x) op x = = e, 
(x op y) op Z = = x ot> (y op Z); 



rulelemmas inv(e) = = e, 
inv(inv(y» = = y, 
inv(y op y") = = inv(y") op inv(y); 

rulelemmas inv(y) op (y op z) = = z, 

z ope.= = z, 
y op (inv(y) op z) = = z, 
y op inv(y) = = e; 

end { 
GrpJ} ; 

4 U: quit; 

Type CONTINUE to return to AFFIRM. 

15 
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3. Simple Send VCs 
This transcript shows a verification of very simple message-passing system. The system is 

described by a Pascal-like program. It uses two abstract data types, SetOfElemType and ElemType. 

The data types are pre-defined and kept in <PVLlBRARY> and used to verify the program (see page 

56, Appendix I, for a listing of the type SetOfElemType). More extensive annotation and explanation 

of the firSt part appear in the User's Guide. 

Transcript file <RBATES>AFFIRMTRANSCRIPT.11-NOV-OO.2 

is open in the AFFIRM system <AFFIRM>AFFIRM.EXE.120 

1 U: 
We are increasing the AverageNameLenglh and the TenninalLineWidth so this transcript 
looks better Jar our printing device. 

2 U: profile A yerageNameLength = 10; 

AverageNameLength: 10 

3 U: profile TerrninalLine \Vidth = 88; 

TerminalLineWidth: 88 

4 U: needs type SetOfElemType; 

compiled for AFFIRM on 22-A~g-BO 14:20:53 
file created for AFFIRM on 22-Aug-BO 14:20:16 

SETOFELEMTYPECOMS 

(File created under Affirm 111) 
compiled for AFFIRM on 22-Aug·80 09:22:12 
file created for AFFIRM on 22·Aug·80 09:22:00 
ELEMTYPECOMS 

(File created under Affirm 111) 
<PVLlBRARY>ELEMTYPE.COM.2<PVLIBRARy'>SETOFELEMTYP~.COM.2 

5 U: print file <pvlibrary>simplesend.program ; 

<PVLlBRARY>SIMPLESEND.PROGRAM.7: 



If 

program Send Receive; 
{ 

This set of three procedures simulates an overly simple message·passing system. In SimpleSend, 
messages are simply "picked" out of RemainingToBeSent, "sent" to ReceivedSoFar, then deleted 
from RemainingToBeSent, which decreases from TotafToBeSent down to NewSetOfElemType. After 
"send" the message is either received or lost. No checks or resends are made so the strongest 
property we can prove about this program is that ReceivedSoFar is a subset of TotalToBeSent. 
} 

{ 
This procedure won't be proved, just left pending. 

} 
procedure pick(s:SetOfElemType; var it:ElemType); 
pre s- = NewSetOfElemType; 
post it in s'; 

{ 
Nor will this procedure be proved, only assumed. Note that the use of 'or' gives us a kind of 

non·determinism. 
) 
procedure send(itElemType; var rec:SetOfElemType); 
pre TRUE;' 
post rec = rec' add it' or rec = rec'; 

{ 
Here's the little procedure which simulates sending and receiving messages. 

} 
procedure SimpleSend(TotaIToBeSentSetOfElemType; 

var ReceivedSoF ar:SetOfElem Type); 
pre TRUE; 
post ReceivedSoFar subset TotaIToBeSent'; 

var NextToSend:ElemTyp~; 
var RemainingToBeSent : SetOfElemType; 
begin 

end; 

RemainingToBeSent: = TotalToBeSent; 
ReceivedSoFar : = NewSetOfElemType; 

maintain ReceivedSoFar subset TotalToBeSent 
and RemainingToBeSent subset TotalToBeSent 

while RemainingToBeSent- = NewSetOfElemType do 
begin 

pick(RemainingToBeSent, NextToSend); 
send(NextToSend, ReceivedSoFar); 
RemainingToBeSent : = RemainingToBeSent rem NextToSend; 

end; 
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6U: 
The units pick and send are 1101 provable since we didn't supply their bodies. 

7 U: readp {pYlibrary)simplesend.program ; 

(Reading Pascal program units from {PVLlBRARY>SIMPLESEND.PROGRAM.7) 
The program units are SendReceive, pick, send, and SimpieSend. 
Type checking SendReceive ... pick ... send ... Simp! ;e',IL. 

8 U: gemcs SimpleS end; 

The result lemma for SimpieSend is: 

assume computesSimpieSend, computes{SimpleSend(TotaIToBeSent, ReceivedSoFar), 
resu It(ReceivedSoF ar1» 

imp ReceivedSoFar1 subset TotalToBeSent; 

There ar~ 3 verification conditions for SimpleSend: 

theorem SimpleSend # 1, ReceivedSoFar2 subset TotaiToBeSent 
and RemainingToBeSent1 subset TotalToBeSent 
and RemainingToBeSent1 = NewSetOfElemType 

imp ReceivedSoFar2 subset TotaiToBeSent; 

theorem SimpieSend # 2, NewSetOfElemType subset TotalToBeSent 
and TotalToBeSent subset TotalToBeSent; 

theorem SimpleSend # 3, ReceivedSoFar subset TotalToBeSent 

(VC1 :) 

and RemainingToBeSent subset TotalToBeSent 
and RemainingToBeSent - = NewSetOfElemType 
and computes(pick(RemainingToBeSent, NextToSend), 

result(NextToSend2» 
and computes(send(NextToSend2, ReceivedSoFar), 

resu It(ReceivedSoF ar3» 
imp ReceivedSoFar3 subset TotalToBeSent 

and (RemainingToBeSent rem NextToSend2) subset TotalToBeSent 

Program SimpleSend is awaiting the proof of vcs SimpleSend # 1, SimpleSend # 2 
, and StmpleSend # 3. 

9 U: gemcs pick~send; 

The result lemma for pick is: 

assume computespick, s - = NewSetOfElemType 



and computes{pick{s, it), 

result{it1 » 
imp it1 in s; 

There is 1 verification condition for pick: 

theorem pick # 1 , s - = NewSetOfElemType 
imp it in s; 

(VC1 :) 
Program pick is awaiting the proof of ve pick # 1. 

The result lemma for send is: 

. assume computessend, computes{send(it, rec), 

result(rec1 » 
imp ree1 = ree add it 

or rec1 = ree; 

There is 1 verification condition for send: 

theorem send # 1, ree = ree add it 
or rec = ree; 

(VC1 :) 
Program send is awaiting the proof of ve send # 1. 

10 U: 
Try to prove the first verification condition/or the unit SimpleSend 

11 U: try SimpJeSend # 1; 

SimpleSend # 1 is untried. 

TRUE 
SimpleSend # 1 proved, 

12 U: next; 

There's more than one unproven ancestor. You may pick one of SimpleSend # 2 
or SimpleSend # 3. 

13U: 

19 

We have proved SimpleSend# 1. The system doesn't want to pick either verification condition 
so we will pick number 2. 

14 U: try SimpleSe,nd#2; 



20 

SimpleSend # 2 is untried. 

all TotalToBeSent ( NewSetOfElemType subset TotalToBeSent 
and TotalToBeSent subset TotalToBeSent) 

15 U: ~,'oke subsetlalll ; 

TRUE 
SimpleSend#2 proved. 

1eu: next; 

Going to unproven ancestor SimpleSend # 3. 
SimpleSend # 3 is untried. 

all ReceivedSoFar, 
TotalToBeSent, 
RemainingToBeSent, NextToSend, NextToSend2, ReceivedSoFar3 

( ReceivedSoFar subset TotalToBeSent and RemainingToBeSent subset 
TotalToBeSent 

.and Remai[lingToBeSent - = NewSetOfElemType 
and computes(pick(RemainingToBeSent, NextToSend), 

result(NextToSe,!d2» 
and computes(send(NextToSenc:j2, ReeeivedSoFar), 

result(ReeeivedSoFar3» 
imp ReceivedSoFar3 subset TotalToBeSent 

and (RemainingToBeSent rem NextToSend2) subset TotalToBeSent) 

17 U: 
We are at the thi/·d verification condition. J-Ve will apply the computes lemma for pick and 
send 

18 U: apply computespick; 

some~, it, it1 
( s - = NewSetOfElemType 

and computes(pick(s, it), 
result(it1 » 

imp it1 in s) 

19 U: apply computessned; 

(computessned = > computessend) 

some it', rec, rec1 
computes(send(it', ree), result{rec1» 



imp ree1 = ree add it' 
or ree1 = ree) 

21 

2OU: put s=RemainingToBeSent, it=NextToSend, it1=NextToSend2, it'=NextToSend2, 
ree = ReeeivedSoFar, reel = ReeeivedSoFar3 ; 

all ReeeivedSoFar. 
TotalToBeSent. 
RemainingToBeSent. NextToSend. NextToSend2. ReceivedSoFar3 

( computes(send(NextToSend2. ReeeivedSoFar). 
result(ReeeivedSoF ar3» 

and ReeeivedSoFar3 
= ReeeivedSoFar add NextToSend2 

or ReceivedSoFar3 = ReeeivedSoFar 
and RemainingToBeSent - = NewSetOfElemType 
and computes(pick(RemainingToBeSent. NextToSend). 

result(NextToSend2» 
and NextToSend2 in RemainingToBeSent 
and ReceivedSoFar subset TotalToBeSent 
.and RemainingToBeSent subset TotalToBeSent 

imp ReceivedSoFar3 subset TotalToBeSent 
and RemainingToBeSent rem NextToSend2 

subset TotalToBeSent) 

·21 U: declare sl:SetOfElemType; 

s1: SetOfElemType 

22 U: apply rem Subset, s subset sl imp s rem x subset s1; 

somes, s1, x 
( s subset s1 
imp (s rem x) subset Si) 

23 U: put s= RemainingToBeSent,sl = TotalToBeSent,x = NextToSend2; 

all ReceivedSoFar, 
TotalToBeSent, 
RemainingToBeSent, NextToSend. NextToSend2, ReceivedSoFar3 

( RemainingToBeSent subset TotalToBeSent 
and RemainingToBeSent rem NextToSend2 

subset TotalToBeSent 
and computes(send(NextToSend2, ReeeivedSoFar), 

result{ReceivedSoFar3» 
and ReceivedSoFar3 

= ReeeivedSoFar add NextToSend2 
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or ReceivedSoFar3 = ReceivedSoFar 

and RemainingToBeSent - = NewSe!OfElemType 
and computes(pick(RemainingToBeSent, NextToSend), 

result(NextT oSend2» 
and NextToSend2 in RemainingToBeSent 
and ReceivedSoFar subset TotalToBeSent 

imp ReceivedSoFar3 subset TotalToBeSent} 

24 U: suppose ReceivedSoFar3= RecehedSoFar add NextToSend2; 

(yes:) 
all ReceivedSoFar, 

. TotalToBeSent, 

RemainingToBeSent, NextToSend, NextToSend2, ReceivedSoFar3 
( . ReceivedSoFar3 

= ReceivedSoFar add NextToSend2 
and RemainingToBeSent subset TotalToBeSent 
and RemainingToBeSent rem NextToSend2 

subset TotalToBeSent 
and <;;omputes(send(NextToSend2, ReceivedSoFar), 

result(ReceivedSoFar3» 
and RemainingToBeSent - = NewSetOfElemType 
and computes(pick(RemainingToBeSent, NextToSend), 

result(NextToSend2» 
and NextToSend2 in RemainingToBeSent 
and ReceivedSoFar subset TotalToBeSent 

imp ReceivedSoFar3 subset TotalToBeSent) 

25 U: replace RecehedSoFar3; 

all ReceivedSoFar, 
. TotalToBeSent, 
RemainingToBeSent, NextToSend, NextToSend2, ReceivedSoFar3 

( ReceivedSoFar3 
= ReceivedSoFar add NextToSend2 

and RemainingToBeSent subset TotalToBeSent 
and RemainingToBeSent rem NextToSend2 

subset TotalToBeSent 
and computes(send(NextToSend2, ReceivedSoFar), 

result(ReceivedSoFar add NextToSend2» 
and RemainingToBeSent - = NewSetOfElemType 
and computes(pick(RemainingToBeSent, NextToSend), 

resu It(NextT oSend 2» 
and NextToSend2 in RemainingToBeSent 
and ReceivedSoFar subset TotalToBeSent 

imp (ReceivedSoFar add NextToSend2) subset TotalToBeSent) 

26 U: apply addSubset, s subset sl and x in sl imp s add x subset sl; 



somes, s1, x 
( s subset s1 and x in s1 
imp (s add x) subset S1) 

27 U:put S = Recei\'edSo Far ,sl = TotaIToBeSent,x = NextToSend2; 

all ReceivedSoFar, 
TotalToBeSent, 
RemainingToBeSent, NextToSend, NextToSend2, ReceivedSoFar3 

( ReceivedSoFar subset TotalToBeSent 
and -(NextToSend2 in TotalToBeSent) 
and ReceivedSoFar3 

= ReceivedSoFar add NextToSend2 
and RemainingToBeSent subset TotalToBeSent 
and RemainingToBeSent rem NextToSend2 

subset TotalToBeSent 
. and computes(send(Nexrr oSend2, ReceivedSoFar), 

result(ReceivedSoFar add NextToSend2» 
and RemainingToBeSent - = NewSetOfElemType 
and computes(pick(RemainingToBeSent, NextToSend), 

result(NextT oSend2)) 
and NextToSend2 in RemainingToBeSent 

. imp (ReceivedSoFar add NextToSend2) subset TotalToBeSent} 

28 U: apply inSubset, x in sand s subset sl imp x in sl; 

some x, s, s1 
( x in sand s subset s1 
imp x in s1) 

. 29 U: search; 

1/9: s = TotalToBeSent 
and x = NextToSend2 

2/9: s = RemainingToBeSent 
"and x = NextToSend2 
·1/2: s1 = RemainingToBeSent 
2/2: s1 = TotalToBeSent 

Proved by chaining and narrowing 
using the substitution 

s = RemainingToBeSent 
and x = NextToSend2 
and s1 = TotalToBeSent 
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TRUE 

SOU: next; 

Going to leaf no:. 

all ReceivedSoFar, 
TotalToBeSent, 
RemainingToBeSent, NextToSend, NextToSend2, ReceivedSoFar3 

( ReceivedSoFar3 
- = ReceivedSoFar add NextToSend2 

and RemainingToBeSent subset TotalToBeSent 
and RemainingToBeSent rem NextToSend2 

subset TotalToBeSent 
and computes(send(NextToSend2, ReceivedSoFar), 

result(ReceivedSoFar3» 
and ReceivedSoFar3 = ReceivedSoFar 
and RemainingToBeSent - = NewSetOfElemType 
and computes(pick(RemainingToBeSent, NextToSend), 

. result(NextToSend2» 
and NextToSend2 in RemainingToBeSent 
and ReceivedSoFar subset TotalToBeSent 

imp ReceivedSoFar3 subset TotalToBeSent) 

31 U: . 
This is the case where not(ReceivedSoFar3= ReceivedSoFaradd NextToSend2}. 

32 U: replace ReceiYedSoFar3; 

SimpleSend #3 is awaiting the proof of lemmas remSubset, addSubset, and inSubset. 

TRUE 

33 U: print proof; 

theoretn SimpleSend # 3, ReceivedSoFar subset TotalToBeSent 

. , 

and RemainingToBeSent subset TotalToBeSent 
and RemainingToBeSent - = NewSetOfElemType 
and computes(pick(RemainingToBeSent, NextToSend), 

resu It(NextT oSend2» 
and computes(send(NextToSend2, ReceivedSoFar), 

resu It(ReceivedSoF ar3» 
imp ReceivedSoFar3 subset TotalToBeSent 

and (RemainingToBeSent rem NextToSend2) subset TotalToBeSent 

SimpleSend # 3 uses computespick%, computessend%, remSubset?, addSubset?, and inSubset? 



proof tree: 
18:1 SimpleSend#3 

apply eomputespick 
19: 13 apply computessend 
20: 14 put s=RemainingToBeSent 

and it = NextT oSend 
and it1 = NextToSend2 
and it' = NextToSend2 
and ree = ReceivedSoFar 
and ree1 = ReceivedSoFar3 

22: 15 apply remSubset 
23: 17 put s= RemainingToBeSent 

and s1 = TotalToBeSent 
and x = NextT oSend2 

24: 18 suppose ReeeivedSoFar3 
= ReceivedSoFar add NextToSend2 

25: yes: 
19 replace ReceivedSoFar3 

26: 21 apply addSubset 
27: 23 put s = ReceivedSoFar 

and s1 = TotalToBeSent 
and x = NextT oSend2 

-28: 24· apply inSubset 
29: 26 put s = RemainingToBeSent 

and x = NextToSend2 
and s1 = TotalToBeSent _{search} 

29: (proven!) 
32: no:{SimpleSend # 3} 

20 replace ReceivedSoFar3 
.) (proven!) 

34U: 

25 

We havefinished offSimpleSend# 3 and have only the 3 lemmas to prove. The next command 
will pick one oj the lemmas. 

35 U: next; 

Going to lemma remSubset. 
re:nSubset is untried. 

all s, s1, x 
( s subset s1 
imp (s rem x) subset s1) 

36 U: invoke subset\alll ; 

all s. s 1, x, x" (sol'T!e x' 



26 

x' in s imp x' in s1 
and x" in (s rem x) 

imp x" in s1» 

37 U: put X'=x"; 

all 5, s1 , x, x" 
-(x" in s) 

and x" 
in srem x 

imp x" in s1) 

38 U: apply remEq,·, i in (s rem x) eqv i in sand j..., =x; 

Please declare i (then type ok; to continue). 

39 (1) U: 
We have forgotten to declare ~ so the system asks us to declare it. 

40 (1) U: declare i:ElemType; 

i: ElemType 

41 (1). U: ok ; 

some i. 5'. x' 
-(i in (5' rem x'» 

eqv i in S' imp i :: x') 

42 U: search; 

1/4: s' = s 
and i = x" 

1/1: x' = x 
Proved by chaining and narrowing 
using the substitution 

S' = ·s 
and i = x" 
and x' = x 

TRUE 
remSubset is awaiting the proof of lemma remEqv. 

43 U: print proof; 



theorem remSubset, S subset s1 
imp (s rem x) subset s1 ; 

remSubset uses remEqv? 

proof tree: 
36:1 remSubset 

invoke subset I all 1 
37: 28 put x' = x" 
41: 29 apply remEqv 

42: 31 put s' = s 
and i = x" 
and x' = x {search} 

·42:-) (proven!) 

44U: 
We have to prove the lemma remEqv. 

45 U.: next; 

Going to lemma remEqv. 
remEqv is untried. 

all i, S, x 
~ -(i in (s rem x» 
eqv i in simp i = x) 

46 U: employ Induction(s); 

Case NewSetOfElemType: Prop(NewSetOfElemType) proven. 
Case add: all SS, ii ( IH(ss) 

imp Prop(ss add ii» remains to be shown. 
(add:) 
allss', ii', i,x 

IH(ss', 30 {remEqv}) 
impifi=ii' 

then - i 
in if ii' = x 

then ss' rem x 
else (ss' rem x) add ii' 

eqv i = x 
else - i 

in if ii' =x 
then ss' rem x 
else (ss' rem x) add ii' 

eqv i in ss' 

impi=x) . 
(The 'cases' comman.d is applicable) 

27 
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47 U: 
We could have turned on Au[oCases so we wouldn't have to explictly do the cases command 

48 U: cases; 

all 55', ii', i, x 
IH(ss', 30 {remEqv}) 

imp ifi=ii' 
then ii' = x 

and -(i in (ss' rem x» 
eqvi =x 

else -(i in (ss' rem x» 
eqv i in ss' 

imp i = x) 

49 u: invoke IH; 

all 55', ii', i, x (some i', x' 
{if i" in 55' imp i; = x' 

then i' in (55' rem x') 
or if i = ii' 

then ii' = x 
and -{i in (55' rem x)) 

eqv i = x 
else -(i in (S5' rem x)) 

eqv i in 55' 
impi=x 

else i' in (ss' rem x') 
imp if i=ii' 

then ii' = x 
and -(i in (ss' 'em x)) 

.eqv i = x 
el5e -{i in (S8' rem x)) 

eqv i in S5' 

50 u: search; 

, /4: i' = i 
1/2: x' = ii' 
2/2: x' = x 

2/4: x' = ii' 
and i' = i 

3/4: x' = x 

imp i =x)) 



and i' = i 
4/4: x' = x 

andi' = ii' 
Unsuccessful. 

51 U: 

29 

search couldn't reduce the expression to true. So we can either use the 12l!!. command or the 
choose command Let's use choose. 

52 U: choose 1,2 ; 

114: i' = i 
2/2: x' = x 

allss', ii', i, x 
(if i in ss' 

then i = x 
and - i 

in ss'·rem x 
and i = ii' 

imp ii' = x 
else - i 

in ss' rem x 
and i = ii' 

imp ii' = x 
eqv i = x) 

53 U: replace i; 

remEqv proved. 
remSubset proved. 

TRUE 

54 U: print status; 

~he untried theorems are addSubset, inSubset, pick# 1, and send # 1. 
No theorems are tried. 
The assumed theorems are computespick, computessend, and computesSimpleSend. 
The awaiting lemma proof theorems are pick, send, SimpleSend, and SimpleSend # 3. 
The proved theorems are remEqv, remSubset, SimpleSend # 1, and SimpleSend # 2. 

55 U: print proof; 

theorem remEqv, i in (s rem x) 
eqv i in s 

and i ... = x; 
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proof tree: 
46:! remEqv 

employ Induction(s} 
-) NewSetOfElemType: 

Immediate 
48: . add: 

33 cases 
49: 34 invoke IH 
52: 35 put i' = i 

and x' = x {choose) 
53: 36 replace i 
-) (proven!) 

56U: next; 

There's more than one unproven ancestor. You may pick one of addSubset or inSubset. 

57U: 
We still have 2 more lemmas to prove before our proofofSimpleSend# 3 will be completed. 

58 U: try addSubset; 

addSubset is untried. 

ails, 51, x 
( 5 subset s1 and x in s1 

imp (s add x) subset s1) 

59 U: im'oke subsetlalll ; 

aU S, s1, x, x" (some x' 
x' in s imp x' in s1 

and x in s1 
and (x" = x) or x" in s 

imp x" in s1») 

60U: put X'=x"; 

all s, s1·, x, x" 
-(x" in s) 

and x in s1 
and x" = x 

imp x" in s1) 

61 U: replace x; 



addSubset proved. 

TRUE 

62 U: print proof; 

theorem addSubset, ssubset s1 
'and x in s1 

imp (s add x) subset s1 ; 

proof tree: 

59:! addSubset 

invoke subset I all I 
, 60: 37 put x' = x" 
61: 38 replace x 
.} (proven!) 

63U: next; 

Going to unproven ancestor inSubset. 
inSubset is untried. 

a,lI x, s, s1 
( x in sand s subset s1 
imp x in s1) 

64LJ: 
The last lemma/or SimpleSend# 3. 

65 U: invoke subset; 

all x, s, s1 (some x' 
( x in s 

and x' in s imp x' in s1 

imp x in s1» 

66 U: search; 

1/1: x' = x 
, Proved by chaining and narrowing 

using the substitution 

x' = x 

TRUE 

inSubset proved. 

31 



32 

SimpleSend # 3 proved" 
Program SimpleSend verified! 

67U: 
That's it, we have proved the unit SimpleSend 

68 U: print proof; 

theorem inSubset, x in s 
and s subset s1 

impx in s1; 

proof tree: 
65:! inSubset 

invoke subset 
66: 39 put x' = x {search} 
66:-} (proven!). 

69U: 
This print command will print any theorems that we have proven in this session. 

70 U: print proof theorems; 

theorem inSubset. x in s 
and s subset s1 

impx in s1; 

proof tree: 
65:! inSubset 

·invoke subset 
66: 39 put x· = x {search} 
66:-} (proven!) 

theore"m addSubset, s subset s1 
and x in s1 

imp (s add x) subset s1 ; 

proof tree: 
59:! addSubsel 

invoke subset I all I 
60: 37 put x' = x" 

. 61: 38 replace x 
(proven!) 



theorem remEqv, i in (s rem x) 
eqv i ins 

and i -= x; 

proof tree: 
46:! remEqv 

employ Induction(s) 
NewSetOfElemType: 

Immediate 
48: add: 

33 cases 
49: 34 invoke IH 
52: 35 put i' = i 

and x' = x {choose} 
53: 36 replace i 

(proven!) 

theorem remSubset, s subset s1 
imp (s rem xi subset ~'; 

. remSubset uses remEqv!. 

proof tree: 
36:! remSubset 

invoke subset I all I 
37: 28 put x' = x" 
41: 29 apply remEqv 
42: 31 put s' = s 

and i = x" 
and x' = x {se;arch} 

42: (proven!). 

theorem SimpleSend # 3, ReceivedSoFar subset TotalToBeSent 
and RemainingToBeSent subset TotalToBeSent 
and RemainingToBeSent - = NewSetOfElemType 
and computes(pick(RemainingToBeSent, NextToSend), 

result(NextT oSend2}) 
and computes(send(NextToSend2, ReceivedSoFar), 

result(ReceivedSoFar3» 
imp ReceivedSoFar3 subset TotalToBeSent 

an.d (RemainingToBeSent rem NextToSend2) subset TotalToBeSent 
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SimpleSend # 3 uses computespick%, cOl1]putessend%, remSubset!, addSubsetl, and inSubsetL 

. proof tree: 
18:! SimpleSend#3 

apply computespick 
19: 13 apply computessend 
20: 14 put s=RemainingToBeSent 

and it = NextToSend 
and it1 = NextToSend2 
and it' = NextToSend2 
and rec = ReeeivedSoFdr 
and ree' = ReceivedSoFar3 

22: . 15 apply remSubset 
23: .17 put s = RemainingToBeSent 

and s1 = TotalToBeSent 
and x = NextToSend2 

24: '8 suppose ReceivedSoFar3 
= ReceivedSoFar add NextToSend2 

25:ye~: 

19 replace ReceivedSoFar3 
26: 21 apply addSubset 
27:23 put s = ReceivedSoFar 

and s1 = TotalToBeSent 
and x = NextToSend2 

28: 24 apply inSubset 
29: 26 put s = RemainingToBeSent 

and x = NextToSend2 
and s1 = TotalToBeSent {search} 

29: (proven!) 
32: no:{SimpleSend # 3} 

20 replace ReceivedSoFar3 
(proven!) 

theorem SimpleSend # 2, NewSetOfElemType subset TotalToBeSent 
and TotalToBeSent subset TotalToBeSent; 

proof tree: 
, 5:! SimpleSend # 2 

invoke subset I all I 
15: (proven!) 

theorem SimpleSend # 1, . ReceivedSoFar2 subset TotalToBeSent 



proof tree: 

and RemainingToBeSent1 subset TotalToBeSent 
and RemainingToBeS.ent1 = NewSetOfElemType 

imp ReceivedSoFar2 subset TotalToBeSent; 

11 :! (proven!) 

theorem coml-'uL~ ~SimpleSend, computes(SimpleSend(TotalToBeSent, ReceivedSoFar}, 
result(ReceivedSoFar1 » 

imp ReceivedSoFar1 subset TotalToBeSent; 

theorem SimpleSend, verification(SimpleSend); 
SimpleSend uses SimpleSend # 1!, SimpleSend # 2!, SimpleSend # 3!, and computesSimpleSend%. 

proof tree: 
8:! SimpleSend 

11:! VC1: 
Immediate 

15:! VC2: 
SimpleSend # 2 

invoke subset I a\l I 
15: (proven!) 
18:! VC3: 

SimpleSend#3 
apply computespick 

19: 13 apply computessend 
20: 14 put s = RemainingToBeSent 

and it = NextToSend 
and it1 = NextToSend2 
and it' = NextToSend2 
and ree = ReceivedSoFar 
and rec1 = ReceivedSoFar3 

22: 15 apply remSubset 
23: 17 put s = RemainingToBeSent 

and s1 = TotalToBeSent 
and x = NextToSend2 

. 24: 18 suppose ReceivedSoFar3 
= ReceivedSoFar add NextToSend2 

25: yes: 
19 replace ReceivedSoFar3 

26: 21 apply ~ddSubset 
27: 23 put s = ReceivedSoFar 

35 
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and s1 = TotalToBeSent 
and x = NextToSend2 

28: 24 apply inSubset 
29: 26 put s = RemainingToBeSent 

and x = NextToSend2 
and s1 = TotalToBeSent {search} 

29: (proven!) 
32: no:{SimpleSend, VC3:} 

20 replace ReceivedSoFar3 
(proven!) 

% eomputes:{SimpIBSend} 
computesSimpleSend 

theorem computespick, s - = NewSetOfElemType 
and computes(pick(s, it), 

result(it1 » 
imp it' in s; 

theorem pick# 1, s - = NewSetOfElemType 
imp it in s; 

theorem pick, verification(pick); 
pick uses pick# 1? and computespick%. 

proof tree: 
9:1 pick 
? VC1: 

pick#1 

% computes: 
computespiek 

theorem eomputessend, computes(send(it, ree), 
result(rec1 » 

imp ree' = ree add it 



or ree' = ree; 

theorem send # 1, ree = ree add it 
or ree=ree; 

theorem send, verifieation{send); 
send uses send # 1? and computessend%. 

proof tree: 
9:1 send 
? VC1: 

send # 1 

% computes: 
. computessend 

71 U: print status SimpleSend; 

SimpleSend is proved. 

72U: quit; 

Type CONTINUE to return to AFFIRM. 

37 
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4. Proof of Rotate Twice 
This property of the Rotate family is considerably more difficult to prove than many others, due to a 

tricky subsidiary deduction. This transcript is also suppos~d to illustrate a realistic proof attempt, 

instead of a polished proof. The transcript shows the proof of one branch of the proof, including 

many false starts. Notice the use of the profile entries. Unlike the other proofs in this volume, Rotate 

Twice shows a number of profile entries (including automechanisms such as AutoNext) turned on. 

Transcript file <GERHART>AFFIRMTRANSCRIPT.8·NOV·80.2 
is open in the AFFIRM system (AFFIRM)AFFIRM.EXE.120 

1 U: 
In this transcript, we will be proving a difficult property of a Rotate operation on sequences. 
The basis data t)'pe for sequences doesll't malter, so we will use a readily available one, for 
Integer. 

2 U: needs type sequenceofinteger; 

compiled for AFFIRM on 7·Nov·80 12:03:27 
file created for AFFIRM on 7·Nov·80 12:03:18 
SEQUENCEOFINTEGERCOMS 
(GERHART>SEQUENCEOFINTEGER.COM.1 

3U: 
the needs command found the type in 111)' directory (i201711ally it would be retrieved from 
('PVLIBRARY»). Here it is: 

4 U: print type sequenceofiS; 

(sequenceofi$ =) SequenceOfinteger) 
The $(Escape) denotes the rest of the type name. 

type SequellceOjll21egel~ 

declare dummy, 5S, 5, s1, s2: SequenceOflnteger; 

declare k, ii, i, i1, i2, j: Integer; 

interfaces NewSequenceOflnteger. s apr i, i apl s, seq(i), s1 join 52, 
LessFir5t(s), LessLast(s): SequenceOflnteger; 



infIx join, api, apr; 

interfaces isNew(s), Firstlnduction(s), Induction(s), NormaIForm(s), 
i ins: Boolean; 

infIX in;· 

interfaces Length(s), First(s}, Last(s): Integer; 

axioms dummy = dummy = = TRUE, 
NewSequenceOflnteger = s apr i = = FALSE, 
s apr i = NewSequenceOflnteger = = FALSE, 
sapri = s1 apri1 = = «s=s1)and (i=i1»; 

axioms i apl NewSequenceOfinteger = = NewSequenceOflnteger apr i, 
i apl (s apr i1) = = (i apl s) apr i1; 

axiom seq(i) = = NewSequenceOflnteger apr i; 

axioms NewSequenceOflnteger join s = = s, 
(s apr i) join s1 = = s join (i apl s1); 

axiom LessFirst(s.apr i) 
= = if s = NewSequenceOflnteger 

then NewSequenceOfinteger 
eise LessFirst(s) apr i; 

axiom LessLast(s apr i) = = s; 

axiom isNew(s) = = (s = NewSequenceOflnteger); 

axioms i in NewSequenceOflnteger = = FALSE, 
iin(sapri1} = = (iinsor{i=i1)}; 

axioms Length(NewSequenceOfinteger) = = 0, 
Length{s apr i) = = Length(s} + 1; 

axiom First(s apr i} = = if s = NewSequenceOflnteger 
then i 
else First(s); 

axiom Last(s apr i) = = i; 

rulelemmas NewSequenceOfinteger = i apl s = = FALSE, 
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i apl s = NewSequenceOflnteg"er = = FALSE; 

rulelemmas s join (s1 apr i) = = (s join s1) apr i, 
s join NewSequenceOflnteger = = s, 
(i apl s1) join s2 = = i apl (s1 join s2), 
(s join (i apl s 1» join s2 

= = s join (i apl (s1 join s2)), 
s join (s1 join s2) = = (s join s1) join s2; 

rule lemma LessFirst{i apl s) = = s; 

rulelemma LessLast(i apl s) 
= = if s = NewSequenceOflnteger 

then NewSequenceOflnteger 
else i apl LessLast(s); 

rulelemma i in (i1 apl s) = = {i in s or (i = i1)); 

rulelemma First(i apl s) = = i; 

rulelemma Last(i apl s) = = if s = NewSequenceOflnteger 
then i 
else Last(s); 

scbemas Firstlnduction(s) 
= = cases(Prop(NewSequenceOflnteger), all ss, ii 

( IH(ss) 
imp Prop(ii apl ss))), 

Induction(s) 
= = cases(Prop(NewSequenceOflnteger), all ss, ii 

( . IH(ss) 
imp Prop(ss apr ii))), 

NormalForm(s) 

= = cases(Prop(NewSequenceOflnteger), all ss, ii (Prop( ss 
apr ii»); 

end {SequenceOf!l1teger} ; 

5 U: 
Since this is a demo transcript, somenbody may be interested in the profile. 

6 U: profile; 



Do you want to Modify, See, or Read your profile? see [confirm] 

your terminal characteristics: 
TerminalLineWidth is 92 

the printout modes: 
LessOutputDesired is On 
AverageNameLength is 5 
AxiomGrouping is On 
LemmaGrouping is On 
InterfaceGrouping is On 
DefineGrouping is On 
NeedsGrouping is On 
NewPP isOn 
SchemaGrouping is On 
UseORinProps is On 
DummyVarName is dummy 
ErrorTokensOutput is 15 
ReportFlag is Off 
RuleLHSPercentage is 49 
ShowNormint is Off 
ShowRuleSimplification is On 
ShowRules is Off 
Typeslnlnterfaces is Variables 

the event history flags: 
HistoryWindowSize is 6 

the executive flags: 
TextEditor is XED 
Timer is Off 
CompileOption is Redefine 
UsingTed is Off 

the information about files: 
FreezeFileName is Frozen-AFFIRM 
LoadNeededTypes is On 

the spelling correction flags: 
DontAskJustTake is 40 

the theorem prov~r flags: 
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AutoResume is Off 
ListAppliedExprs is On 
AutoCases is On 

the Interlisp mode flags: 
GarbageColiectionMessage is Off 
GarbageColiectionPages is 40 
BreakAccess is Off 

the transcript infurmation: 
. AnnotatingTranscript is On 

TranscriptFileName is AFFIRMTRANSCRIPT . 

the profile information: 
SaveOnlyChangedEntries is On 
UserProfileFileName is --AFFIRMUserProfile-­
Enquir~AfterFreeze is Off 
Enquirelnitialiy is Off 
ReadAnotherProfileFile is On 

the Knuth·Bendix flags: 
Cal:ltiousCompletion is Off 
KBAxiomOrder is Inverse 

the automatically-applied event flags: 
AutoAnnotate is On 
AutoCompile is Off 
AutoFix is Off 
AutoF reeze is Ask 
AutoGenvcs is Ask 
Autolnfix is Off 
AutolnvokelH is Off 
AutoNext is On 
AutoNormint is On 
AutoPrintProof is Ask 
AutoPrintProofTheorems is Ask 
AutoReplace is Off 
AutoSave is Off 
AutoSearch is Off 
AutoSufficient is Off 
AutoUndo is Off 

NOW do you want to modify the current profile? no [confirm] 



Do you wish to save this profile? no [cpnfirm] 

7 U: 
Actually, I do want to modify lhe lenninalline width to display better. The easy way is: 

8 U: profile terminalline$ = $ = = 88; 

n = II? 

TerminalLineWidth: 88 
= EVALQT 

. Unexpected PROFILEENTRYNAME found in routine NIL. 
(undefined routine!) 
Parameters: (none) 

EVALQT can't be set to 88. 
New value: 
( ... profile aborted: effects undone) 

9U: 
Well, that brought up AFFIRM's breakfasL I typed a bad character. Trying again. 

10 U: profile terminallinewidth = 88; 

TerminalLineWidth: 88 

11 U: 
Now I need an environment 

12 U: adopt sequenceormte$; 

(sequenceofinte$ = > SequenceOflnteger) 
New environment: 
dummy, SS, s, s1 , s2: SequenceOflnteger 
k, ii, i, i1, i2, j: Integer 

13 U: 
The concept ofinterest is sequence rotation, both ways. 

14 U: define Rotate{s,i)= =ifisNew{s) or i=O then s 

( ... command input aborted) 

15 U: define Rotate{s,i) = = if isNew{s) then s else if i= 0 then s else if i<O then 
Rotate(LessFirst(s) apr First{s), i + 1) else Rotate(Last{s) apl LessLast(s), i-I); 
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Please provide an interface declaration for Rotate (then type ok; to continue). 

16 (1) U: interface Rotate(s,i):SequenceOfInteger; 

17 (1) U: ok; 

define Rotate{s, i} 

1au: 

1eu: 

= = if (s = NewSequenceOflnteger) or (i = 0) 
then s 
else if i<D 

then Rotate(LessFirst(s) apr First(s}, i + 1} 
else Rotate(Last{s) apl LessLast(s), i-1}; 

N ole the change in fonn, adding an 'or' for the first two conditionals. 

The property ofinterest is: 

20 U: try RTwice, Rotate{Rotate(s,i)j) = Rotate(s,i + j); 

Making node RTwice a theorem . 
. RTwice is untried. 

all s, i, j (Rotate{Rotate{s, i), j) = Rotate{s, i + j)) 

21 U: 
The usual approach is to dive into an induction on one of the integer parameters. Let's try i. 

22 U: employ Induction{i)~ 

Case 0: Prop(D) remains to be shown. 
Case I?IFFERENCE: all ii «ii < = O) and IH{ii) imp Prop(ii·'» remains to be shown. 
Case PLUS: all ii {(D < = ii) and IH(ii} imp Prop(ii + 1» remains to be shown. 
(D:) 
all s, i {Rotate{Rotate(s, D}, j) = Rotate(s, j)) 

23 U: inyoke ~otateI21; 

TRUE 
Going to leaf DIFFERENCE:. 

allii',s,i 



( (ii' <= O) and IH(ii', 1 {RTwice) 
imp Rotate(Rotate(s, ii'·1), j) 

= Rotate(s, ii' + j • 1» 

24 U: in-mke Rotatel21; 

all ii', s, j 
( (ii' < = 0) and IH(ii', 1 {RTwice) 
imp if s = NewSequenceOfinteger 

then Rotate(s, j) = Rotate(s, ii' + j . 1) 
else Rotate(Rotate(LessFirst(s) apr First(s}, jj'}, j) 

= Rotate(s, ii' + j • 1}) 

25 U: invoke RotateI2,31; 

all ii', S,j 

( (ii' < = 0) and IH(ii', 1 {RTwice) 
imp if s = NewSequenceOflnteger 

. then Rotate(s, j) = s 

26U: 

else }f Rotate(LessFirst(s) apr First(s), ii') = NewSequenceOfinteger 
or j =0 

then Rotate(LessFirst(s) apr First(s), ii') 
= Rotate(s, ii' + j • 1,) 

else if j<O 
then Rotate( LessFirst(Rotate(LessFirst(s) apr First(s) 

ii'» 
apr First(Rotate(LessFirst(s) apr First(s), 

. ii'», 
j + 1) 

= Rotate(s, ii' + j • 1) 
else Rotate( . Last(Rotate(LessFirst(s) apr First(s), 

ii'» 
apl LessLast(Rotate(LessFirst(s) apr First(s) 

ii') ), 
j·1 ) 

= Rotate(s, ii' + j . 1» 

Did that wrong, wanted 1,2 Rotates. 

27 U: undo; 

invoke undone. 
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28 U: imoke Rotatell,21; 

all ii',s,j 
{ (ii' < = 0) and IH{ii', 1 {RTwice}) 
imp s = NewSequenceOflnteger 

or Rotate{Rotate(LessFirst(s) apr First(s), ii'), j) 
= Rotate(s, ii' + j • 1 )} 

29U: 
Time to use the il2duction. 

30 U: im'oke IH; 

all ii', s, j (some s', j' 
( ii' <= 0 

and Rotate(Rotate(s', ii'), j'} = Rotate(s', ii' + j') 
imp" s = NewSequenceOfinteger 

or Rotate(Rotate(LessFirst(s) apr First(s), ii'), j) 
= Rotate(s, ii' + j • 1») 

31 U: put s'=LessFirst(s) apr First(s) andf=j; 

all ii', s, j " 

"ii'<= 0 
and Rotate(Rotate(LessFirst(s) apr First(s}, ii'), 

j} 
= Rotate(LessFirst(s) apr First(s), ii' + j) 

imp s = NewSequenceOflnteger 
or Rotate(Rotate(LessFirst(s) apr First(s}, ii'), 

j) 
= Rotate(s, ii' + j . 1)} 

32 U: replace; 

all ii', s, j 

"ii' <= 0 
and Rotate(Rotate(LessFirst(s) apr First(s), ii'), 

j} 

= Rotate(LessFirst(s) apr First(s), ii' + j) 
imp s = NewSequenceOflnteger 

or Rotate(LessFirst(s} apr First(s}, ii' + j) 
= Rotate(s, ii' + j . 1)} 

33U: 



Nol'.' it's down to making the last Rotates match 

34 U: invoke Rotatel-ll; 

all ii', s, j 
ii' (='0 

and Rotate(Rotate(LessFirst(s) apr First(s), ii'), 
j) 

= Rotate(LessFirst(s) apr First(s), ii' + j) 
imp s = NewSequenceOflnteger 

or if ii' + i - 1 = 0 

3PU: 

then Rotate(LessFirst(s) apr First(s), 

ii' + j) 
= s 

else ii' + j < = 0 
or Rotate(LessFirst(s) apr First(s), 

ii' + j) 
= Rotate(Last(s) apl LessLast(s), 

ii' + j - 2» 

47 

Let's delete the used equality_ This is not recommended style. but we have never implemented 
the conesponding non-editor command 

36U: @; 

tty: 
1"'52 (delete 3) 
ok 
Please summarize what you did, end with ';' 

deleted hypotheses; 

all ii', s,i 
ii'<= 0 

imp s = NewSequenceOflnteger 

or if ii' + j -, = 0 
then Rotate(LessFirst(s) apr First(s), 

ii' + j) 

= s 
else ii' + j < = 0 

or Rotate(LessFirst(s) apr First(s), 

ii' + j) 
= Rotate(Last(s) apl LessLast(s), 

ii' + j - 2)} 

37 U: suppose isNew(s); 
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{yes:} 
TRUE 
Going to leaf no:. 

all ii',s,i 
{ (s - = NewSequenceOflnteger) and (ii' < = 0) 
imp if ii' + j ., = 0 

38U: 

then Rotate(LessFirst{s) apr First(s}, 
ii' + j) 

= s 
else ii' + i < = 0 

. or Rotate{LessFirst{s) apr First(s), 
ii' + j) 

= Rotate(Last(s) apl LessLast(s), 
ii' + j ·2}) 

I walll [0 break up the cases and re-arrange the expression. 

39 U: split; 

(first:) 

all ii',s,i 
.( . (s - = NewSequenceOflnteger) and (ii' < = 0) 

and ii' + i - 1 = 0 
imp Rotate(LessFirst(s) apr First(s), ii' + j) 

= s) 

40U: 
A rearrangement of the Integer expression is needed This requires explicitly applying an 
"Integer Fact" lemma, as Affiml 's Integer Simplifier doesn't handle this case. 

4' U: apply AddSwitch~ i+"j=k eq" (i=k-j andj=k-i); 

some i: k, j' ( i + j' = k 
eqv (i = k·j') and G' = k-i» 

42 u: put i=ii' +j and j'=-1 and k=O; 

all ii', s,i 
ii' + j = , 

and -, = -(ii' + j) 

and ii' + j - 1 = 0 
and s - = NewSequenceOflnteger 



and ii'<= 0 
imp Rotate(LessFirst(s) apr Rrst{s), ii' + j) 

= s) 

43 U: replace; 

all ii', s, j 
(ii' + j = 1) and (s - = NewSequenceOflnteger) 

and ii'<= 0 
imp Rotate{LessFirst(s) apr First(s), 1) = s) 

44 U: im'oke Rotate; 

all ii',s,j 
(ii' + j = 1) and (s - = NewSequenceOflnteger) 

and ii' <= 0 
imp Rotate{First{s) apl LessFirst(s), 0) = s) 

45 u:·invoke Rotate; 

all ii', S,i 
( (ii' + j = 1) and (s - = NewSequenceOflnteger) 

and ii' <= 0 
imp First(s) apl LessFirst(s) = s) 

46U: 
And that's a nonnalfonn properly. 

47 U: employ NormaIForm(s); 

Case NewSequenceOfinteger: Prop(NewSequenceOflnteger) proven. 
Case apr: all ss,·jj (Prop(ss apr ii» remains to be shown. 
(apr:) 
all ss', jj', ii,j 

( (ii + j = 1) and (ii < = 0) 
imp (ss' = NewSequenceOflnteger) or (First(ss') apl LessFirst(ss') = ss'» 

48U: 
'Whoops, it requires Induction, so it should be a lemma. 

49 U: undo; 

employ undone. 
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50 U: apply FirstSplit, -isNew(s) imp First(s) apl LessFirst(s)=s; 

some s' «s' = NewSequenceOflnteger) or (First(s') apl LessFirst{s') = S'» 

51 U: search; 

1/1: s' = s 
Proved by chaining and narrowing 
using the substitution 

s' = s 

. TRUE' 
Going to leaf second:. 

all ii', s, j 
( (s - = NewSequenceOfinteger) and (ii' < = 0) 
imp' W + j - 1 = 0 

or ii' + j <= 0 
or Rotate{LessFirst{s) apr First{s), ii' + j) 
= Rotate{Last{s) apl LessLast{s), 

ii' + j - 2» 

52U: 
The integer tenns show that ii'+ i>~2 in the Rotate equalitJ; which will allow invoking it 
through to match. Firs~ let's draw out the fact. 

53 U: suppose if + j> = 2; 

(yes:) 
all ii', S, j 
{ (2 < = ii' + j) and (s - = NewSequenceOflnteger) 

and ii' <= 0 
imp ii' + j - 1 = 0 

or Rotate(LessFirst(s) apr First{s), ii' + j) 
= Rotate(Last(s) apl LessLast(s), 

ii' + j - 2» 

. 54 U: iriyoke Rotate; 

all ii', s, j 
{ (2 < = ii' + j) and (s - = NewSequenceOflnteger) 

and ii' <= 0 
imp ii' + j -, = 0 

or Rotate{First(s) apl LessFirst(s), 



ii' + j • ') 
= Rotate(Last(s) apl LessLast(~), 

ii' + j . 2)} 

55 U: invoke Rotate; 

all ii', s, j 
(2 < = ii' + j) and (s - = NewSequenceOflnteger) 

andii'{= 0 
imp ii' + j . 1 = 0 

or if LessFirst(s) = hlewSequenceOflnteger 

56U: 

then Rotate(NewSequenceOflnteger apr First(s), 
ii' + j . 2) 

= Rotate(Last(s) apl LessLast(s), 
ii' + j . 2) 

else Rotate( Last(LessFirst(s» 
apl First(s) apl LessLast(LessFirst(s)), 

. ii' + j • 2) 

= Rotate(Last{s) apl LessLast(s), 
ii' + j . 2» 

All these selections should simplify with NormalFonn. 

57 U: employ NormalForm(s); 

Case NewSequenceOflnteger: Prop(NewSequenceOflnteger) proven. 
Case apr: all ss, ii (Prop{ss apr ii» remains to be shown. 
(apr:) 

allss', ii', ii, j 
( {2 (= ii + j) and (ii < = 0) 

imp ii + j . 1 = 0 
or if sst = NewSequenceOflnteger 

then Rotate(NewSequenceOflnteger apr ii', 
ii + j . 2) 

= Rotate(ii' apl ss', ii + j . 2) 

else Rotate(ii' apl (First(ss') apl LessFirst(ss'», 
ii + j ·2) 

= Rotate(ii' apl ss·, ii + j . 2» 

58 U: replace; 

allss', ii', ii, j 
(2 < = ii + j) and (ii < = 0) 

imp (ii + j • 1 = 0) or (ss' = NewSequenceOflnteger) 
or Rotate(ii' apl (First(ss') apl LessFirst(ss'», 
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ii + j - 2) 
= Rotate{ii' apl SS', ii + j - 2» 

59 U: apply FirstSplit; 

some s «s = NewSequenceOflnteger) or {First(s} apl LessFirst(s} = s}) 

6OU: put 5=S5'; 

allss', ii', ii,i 
( Ss' - = NewSequenceOflnteger 

and First(ss') apl LessFirst{ss'} = ss' 
and2<= ii + j 
and ii <= 0 

imp ii + i -1 = 0 
or Rotate(ii' apl {First{ss'} apl LessFirst(ss'}), 

ii + j - 2) 

= Rotate{ii' apl ss', ii + i - 2» 
61 U: replace;_ 

TRUE 
Going to leaf no:. 

all ii', s, j 
{ {ii' + j < 2} and (s - = NewSequenceOflnteger) 

and ii' <= a 
imp . ii' + j -, = a 

or ii' + j < = 0 
or Rotate(LessFirst{s} apr First(s), ii' + j) 

= Rotate(Last(s) apl LessLast(s), 
ii' + j - 2» 

62 u:.apply AddSwitch; 

some i, k, j' ( i + j' = k 

eqv (i = k-j') and G' = k-i» 

63U: put i=ii'+j and f=-l and k=O; 

allii\ s,i 
{if ii' + j = , 

then -, - = -(ii' + j) 
and ii' + j -, - = 0 



and ii' + j < 2 
and s - = NewSequenceOflnteger 
and ii' <= 0 

imp Rotate(LessFirst(s) apr First(s), 
ii' + j) 

= Rotate(Last(s) apl LessLast(s), 
ii' + j - 2) 

else ii' + j - 1 - = 0 
and ii' + j < 2 
and s - = NewSequenceOflnteger 
and ii' <= 0 

imp ii' + j<= 0 
or Rotate(LessFirst(s) apr First(s), 

ii' + j) 
= Rotate(Last(s) apl LessLast(s), 

ii' + j - 2)} 

64 U: replace; 

TRUE 
Going to leaf PLUS:. 

all ii', s, i 
{ (0 < = ii') and IH{ii', 1 {RTwice}) 
. imp Rotate(Rotate(s, ii' + 1),1) 

= Rotate(s, ii' + i + 1}} 

65 U: 
Now we have to do the same thing on this side. 

66 U: print proof; 

theorem RTwice, Rotate(Rotate(s, i), j) = Rotate(s, i + j); 
RTwice uses FirstSplit? and AddSwitch? 

p.roof tree: 
22:\ RTwice 

employ Induction(i) 
23: 0: 2 invoke Rotate \ 2 \ 
23: (proven!) 
24: DIFFERENCE: 

3 invoke Rotate \ 2 \ 
24: 6 cases 
28: 7 invoke Rotate \ 1 , 2 \ 
30: 8 invoke IH 
31: 9 put (s' = LessFirst(s) apr First{s» and (i' = j) 
32: 10 repla.ce 
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34: 11 invoke Rotate I . 1 I 
34: 12 cases 
36: 13 @ {deleted hypotheses} 
37: 14 suppose isNew(s) 
37: yes: 

Immediate 
39: no:16 split 
41: first:' 

17 apply AddSwitch 
42: 20 put i = ii' + j 

and 0' = -1) and (k = 0) 
43: 21 replace 
4"4: 22 invoke Rotate 
45: ' 23 invoke Rotate 
50: 24 apply FirstSplit 
'51: 26 put s' = s {search} 
51: (proven!) 
53: second:{RTwice, DIFFERENCE:, no:} 

18 suppose ii' + j)= 2 
54: yes: 

28 invoke Rotate 
55: 30 invoke Rotate 
55: 31 cases 
57: 32 employ NormaIForm(s) 

NewSequenceOflnteger: 
Immediate 

57: apr: 
33 cases 

58: 34 replace 
59: 35 apply IFirstSplit 
60: 36 put s = ss' 
61: 37 replace 

(proven!) 
62: no:{RTwice, DIFFERENCE:, no:, second:} 

29 apply AddSwitch 
63: 38 put i = ii' + j 

and(j' = ·1)and(k=0) 
64: 39 replace 

(proven!) 
1·) PLUS:{RTwice} 

4 

theorem FirstSplit, -isNew(s) imp First(s) apl LessFirst(s) = s; 

theorem AddSwitch, i + j = k 
eqv (i = k-j) anq G = k·i); 



67 U: assume Addswitch; 

(Addswitch =) AddSwitch) 

68 U: try frrstsplit; 

(firstsplit = > FirstSplit) 
FirstSplit is untried. 

all s «s = NewSequenceOfinteger) or (First(s) apl LessFirst(s} = s» 

. 69 U: employ Induction(s); 

Case NewSequenceOflnteger: Prop{NewSequenceOflnteger) proven. 
Case apr: all ss, ii (IH(ss) imp Prop{ss apr ii» remains to be shown .. 
(apr:) 
all 55', ii' { IH(ss', 25 {FirstSplit}) 

imp (ss' = NewSequenceOflnteger) or (First(ss') apl LessFirst{ss') = ss') 

70 U: invoke IH; 

TRUE 
FirstSplit proved. 
Automatically print the proof of FirstSplit? no [confirm] 
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1.1. SetOfElemType 

type SetOjElemType, 

needs type ElemType; 

Appendix I 
Types Used in. Proofs 

declare reflexive, s, s1, s2, ss: SetOfElemType; 

declare ii, i, i1, i2, x: ElemType; 

interfaces NewSetOfElemType, s add x, s rem i, s diff s1, s int s1, s union s1 
: SetOfElemType; 

infIx union, diff, int, rem, add; 

interfaces i in!", isNewSetOfElemType(s), s subset s1, Induction(s), NormaIForm(s) 

: Boolean; 

infIx subset, in; 

axioms reflexive = reflexive = = TRUE, 
NewSetOfElemType = s add i = = FALSE, 

s add i = NewSetOfElemType = = FALSE; 

axioms NewSetOfElemType rem i = = NewSetOfElemType, 
(s add x) rem i 

= = if X= i 
then s rem i 
else (s rem i) add x; 

a..xioms NewSetOfElemType dill s = = NewSetOfElemType, 
(s add x) diff s1 

= = if x in s1 
then s difl s1 

else (s diff s1) add x; 

axioms NewSetOfElemType int 51 = = NewSetOfElemType, 

(s add x) int s1 

= = if x in s1 
then (s int 51) add x 
else s int s1 ;. 



axioms NewSetOfElemType union s1 = = s1, 
(s add x) union s1 = = (s union s1) add x; 

axioms x in NewSetOfElemType = = FALSE, 
i in (s add x) = = ({i = x) or i in s); 

axiom isNewSetOfElemType(s) = = (s = NewSetOfElemType); 

derme s = s1 = = (s subs.", ': ~1 and s1 subset s), 

s subset s1 
= = all x' (x' in s imp x' in s1); 

schemas Induction(s) 
= = cases(Prop(NewSetOfElemType), ali ss, ii ( IH(ss) 

imp Prop(ss add ii))), 

NormaIForm(s) 
= = cases(Prop(NewSetOfElemType), ali ss, ii (Prop(ss add ii))); 

end {SetOjElemType} ; 
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1.2. SequenceOflnteger 
type SequenceOflnteger, 

-----------

declare dummy, ss, s, s1, s2: SequenceOflnteger; 

declare k, ii, i, i1, i2, j: Integer; 

interfaces NewSequenceOflntegel, s apr i, i apl s, seq(i), s1 join s2, LessFirst(s), 
LessLast(s), dedup(s}, reverse(s}, Rotate(s, k), Initial(s, k), 

_ Lesslnitial(s, k}, deletepth(s, k), seqrange(i, D, sequpto(i) 
: SequenceOflnteger; 

infIx join, api, apr; 

interfaces isNew8equenceOflnteger(s), s1 subseq s2, Firstlnduction{s), Induction(s), 
NormaIForm(s), i in s,- nodups(s}, disjoint(s', s2): Boolean; 

infIx in, subseq; 

interfaces Length(s), First(s), Last(s), pth(s, k): Integer; 

axioms dummy=dummy = = TRUE, 
NewSequenceOflnteger = s apr i = = FALSE, 
s apr i = NewSequenceOflnteger = = FALSE, 
5 apr i = s1 apr i1 = = «s= 51) and (i::; i1)); 

axioms i apl NewSequenceOfinteger = = NewSequenceOflnteger apr i, 
iapl(sapri1) = = (iapls)apri1; 

axiom seq(i) = ::; NewSequenceOflnteger apr i; 

axioms NewSequenceOflnteger join s = = s, 
(s apr i) join s1 = = s join (i apl 51); 

_ axiom LessFirst(s apr i) 
= = if s = NewSequenceOflnteger 

then NewSequenceOflnteger 
else LessFirst(s) apr i; 

axiom LessLast(s apr i) = = 5; 

axioms dedup(NewSequenceOflnteger} = = NewSequenceOflnteger, 



dedup(s apr i) 
= = ifi in s 

then dedup{s) 
else dedup(s) apr i; 

axioms reverse(NewSequenceOflnteger) = = NewSequenceOfinteger, 
reverse(s apr i) = = i apl reverse(s); 

axiom isNewSequenceOflnteger{s) = = (s = NewSequenceOflnteger); 

axioms s1 subseq (s apr i) 
= = { (s1 = NewSequenceOflnteger) or s1 subseq s 

or LessLast(s1) subseq sand (Last(s1) = i}), 
s subseq NewSequenceOflnteger = = .(s = NewSequenceOflnteger); 

axioms i in NewSequenceOflnteger = = FALSE, 
iin{sapri1) = = (iinsor{i=i1»; 

axioms nodups{s apr i} = = (nodups(s) and -(i in s», 
nodups(NewSequenceOflnteger) = = TRUE; 

axioms disjoint(NewSequenceOflnteger, s) = = TRUE, 
disjoint(s apr i, s1) = = (disjoint(s, s1) and -(i in s1»; 

axioms Length(NewSequenceOflnteger} = = o. 
. Length(s apr i) = = Length(s) + 1; ; 

axiom First(s apr i) = = if s = NewSequenceOflnteger 
then i 
else First(s); 

axiom Last(s apr i) = = i; 

rulelemmas NewSequenceOflnteger = i apt s = = FALSE, 
i apl 5 = NewSequenceOflnteger = = FALSE; 

ru lelemmas s join (s1 apr i) = = (s join s1 ) apr i, 
s join NewSequenceOflnteger = = s. 
(i apl s1) join s2 = = i apl (s1 join s2), 
(s join (i apl s1» join s2 = = s join {i apl (s1 join 52», 
s join (s1 join s2) = = (s join s1) join s2; 

rulelemma LessFirst(i apl s) = = s; 

ruIelemma LessLast(i apl s) = = if s = NewSequenceOflnteger 
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then NewSequenceOflnteger 
else i apl LessLast(s); 

rulelemma i in (i1 apl s) = = (i in s or (i = i1»; 

rulelemma nodups(i apl s) = = (nodups(s) and -(i in s»; 

rulelemma First(i apl s) = = i; 

rulelemma Last(i apl s) = = if s = NewSequenceOflnteger 
then i 
else Last(s); 

derme Rotate(s, k) 
= = if (s = NewSequenceOflnteger) or (k = 0) 

then s 
else Rotate(LessFirst(s} apr First(s), k-1), 

Initial(s, k) 
= = if (s = NewSequenceOflnteger) or (k = 0) 

then NewSeq uenceOfl nteger 
else First(s) apllnitial(LessFirst{s), k-1), 

Lesslnitial(s, k) 
= = if (s = NewSequenceOflnteger) or (k = 0) 

then s 
else Lesslnitial(LessFirst(s), k-1), 

deletepth(s, k) 

= = if k = 1 
then LessFirst(s) 
else First(s) apl deletepth(LessFirst(s), k·1), 

seqrange(i, j) 

= = if j<i 
then NewSequenceOfinteger 
else seqrange(i, j·1) apr j, 

pth(s, k) 

= = if k = 1 
then First(s) 
else pth(LessFirst(s), k-1), 

sequpto(i) = = seqrange(1, i); 

schemas Firstlnduction(s) 
= = cases(Prop(NewSequenceOflnteger), all ss, ii ( IH(ss) 

imp Prop(ii apl ss»), 



Induction(s} 
= = cases{Prop(NewSequenceOflnteger), all ss, ii ( IH(ss) 

imp Prop{ss apr ii))), 

NormaIForrn{s) 
= = cases{Prop(NewSequenceOflnteger}, all ss, ii (Prop(ss apr ii))); 

end {SequenceOpnteger) ; 
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